Cargando…
Analyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data
Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate missing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustme...
Autores principales: | Leacy, Finbarr P, Floyd, Sian, Yates, Tom A, White, Ian R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860630/ https://www.ncbi.nlm.nih.gov/pubmed/28073767 http://dx.doi.org/10.1093/aje/kww107 |
Ejemplares similares
-
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Comment on “Analysis of Longitudinal Trials With Protocol Deviations: A Framework for Relevant, Accessible Assumptions, and Inference via Multiple Imputation,” by Carpenter, Roger, and Kenward
por: Seaman, Shaun R., et al.
Publicado: (2014) -
Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study
por: Shah, Anoop D., et al.
Publicado: (2014) -
Combining data discretization and missing value imputation for incomplete medical datasets
por: Huang, Min-Wei, et al.
Publicado: (2023) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023)