Cargando…
Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa [alveolar l...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860920/ https://www.ncbi.nlm.nih.gov/pubmed/28930287 http://dx.doi.org/10.1038/mi.2017.80 |
_version_ | 1783308010981949440 |
---|---|
author | Moliva, Juan I. Hossfeld, Austin P. Canan, Cynthia H. Dwivedi, Varun Wewers, Mark D. Beamer, Gillian Turner, Joanne Torrelles, Jordi B. |
author_facet | Moliva, Juan I. Hossfeld, Austin P. Canan, Cynthia H. Dwivedi, Varun Wewers, Mark D. Beamer, Gillian Turner, Joanne Torrelles, Jordi B. |
author_sort | Moliva, Juan I. |
collection | PubMed |
description | Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa [alveolar lining fluid (ALF)] which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8(+) T cells, and CD8(+) T cells with the potential to produce IFNγ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8(+) T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design. |
format | Online Article Text |
id | pubmed-5860920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-58609202018-03-22 Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner Moliva, Juan I. Hossfeld, Austin P. Canan, Cynthia H. Dwivedi, Varun Wewers, Mark D. Beamer, Gillian Turner, Joanne Torrelles, Jordi B. Mucosal Immunol Article Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa [alveolar lining fluid (ALF)] which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8(+) T cells, and CD8(+) T cells with the potential to produce IFNγ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8(+) T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design. 2017-09-20 2018-05 /pmc/articles/PMC5860920/ /pubmed/28930287 http://dx.doi.org/10.1038/mi.2017.80 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Moliva, Juan I. Hossfeld, Austin P. Canan, Cynthia H. Dwivedi, Varun Wewers, Mark D. Beamer, Gillian Turner, Joanne Torrelles, Jordi B. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title | Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title_full | Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title_fullStr | Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title_full_unstemmed | Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title_short | Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T cell dependent manner |
title_sort | exposure to human alveolar lining fluid enhances mycobacterium bovis bcg vaccine efficacy against mycobacterium tuberculosis infection in a cd8+ t cell dependent manner |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860920/ https://www.ncbi.nlm.nih.gov/pubmed/28930287 http://dx.doi.org/10.1038/mi.2017.80 |
work_keys_str_mv | AT molivajuani exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT hossfeldaustinp exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT canancynthiah exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT dwivedivarun exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT wewersmarkd exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT beamergillian exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT turnerjoanne exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner AT torrellesjordib exposuretohumanalveolarliningfluidenhancesmycobacteriumbovisbcgvaccineefficacyagainstmycobacteriumtuberculosisinfectioninacd8tcelldependentmanner |