Cargando…
Improving imputation in disease-relevant regions: lessons from cystic fibrosis
Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the Internationa...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861096/ https://www.ncbi.nlm.nih.gov/pubmed/29581887 http://dx.doi.org/10.1038/s41525-018-0047-6 |
_version_ | 1783308031237292032 |
---|---|
author | Panjwani, Naim Xiao, Bowei Xu, Lizhen Gong, Jiafen Keenan, Katherine Lin, Fan He, Gengming Baskurt, Zeynep Kim, Sangook Zhang, Lin Esmaeili, Mohsen Blackman, Scott Scherer, Stephen W. Corvol, Harriet Drumm, Mitchell Knowles, Michael Cutting, Garry Rommens, Johanna M. Sun, Lei Strug, Lisa J. |
author_facet | Panjwani, Naim Xiao, Bowei Xu, Lizhen Gong, Jiafen Keenan, Katherine Lin, Fan He, Gengming Baskurt, Zeynep Kim, Sangook Zhang, Lin Esmaeili, Mohsen Blackman, Scott Scherer, Stephen W. Corvol, Harriet Drumm, Mitchell Knowles, Michael Cutting, Garry Rommens, Johanna M. Sun, Lei Strug, Lisa J. |
author_sort | Panjwani, Naim |
collection | PubMed |
description | Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the International CF Gene Modifier Consortium. Imputation with the larger Haplotype Reference Consortium (HRC; 32,470 individuals) displayed improved coverage but low sensitivity of variants clinically relevant for CF. A hybrid reference that combined whole genome sequencing (WGS) from 101 CF individuals with the 1KG imputed a greater number of single-nucleotide variants (SNVs) that would be analyzed in a genetic association study (r(2) ≥ 0.3 and MAF ≥ 0.5%) than imputation with the HRC, while the HRC excelled in the lower frequency spectrum. Using the 1KG or HRC as reference panels missed the most common CF-causing variants or displayed low imputation accuracy. Designs that incorporate population-specific WGS can improve imputation accuracy at disease-specific loci, while imputation using public data sets can omit disease-relevant genotypes. |
format | Online Article Text |
id | pubmed-5861096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58610962018-03-26 Improving imputation in disease-relevant regions: lessons from cystic fibrosis Panjwani, Naim Xiao, Bowei Xu, Lizhen Gong, Jiafen Keenan, Katherine Lin, Fan He, Gengming Baskurt, Zeynep Kim, Sangook Zhang, Lin Esmaeili, Mohsen Blackman, Scott Scherer, Stephen W. Corvol, Harriet Drumm, Mitchell Knowles, Michael Cutting, Garry Rommens, Johanna M. Sun, Lei Strug, Lisa J. NPJ Genom Med Brief Communication Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the International CF Gene Modifier Consortium. Imputation with the larger Haplotype Reference Consortium (HRC; 32,470 individuals) displayed improved coverage but low sensitivity of variants clinically relevant for CF. A hybrid reference that combined whole genome sequencing (WGS) from 101 CF individuals with the 1KG imputed a greater number of single-nucleotide variants (SNVs) that would be analyzed in a genetic association study (r(2) ≥ 0.3 and MAF ≥ 0.5%) than imputation with the HRC, while the HRC excelled in the lower frequency spectrum. Using the 1KG or HRC as reference panels missed the most common CF-causing variants or displayed low imputation accuracy. Designs that incorporate population-specific WGS can improve imputation accuracy at disease-specific loci, while imputation using public data sets can omit disease-relevant genotypes. Nature Publishing Group UK 2018-03-20 /pmc/articles/PMC5861096/ /pubmed/29581887 http://dx.doi.org/10.1038/s41525-018-0047-6 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Brief Communication Panjwani, Naim Xiao, Bowei Xu, Lizhen Gong, Jiafen Keenan, Katherine Lin, Fan He, Gengming Baskurt, Zeynep Kim, Sangook Zhang, Lin Esmaeili, Mohsen Blackman, Scott Scherer, Stephen W. Corvol, Harriet Drumm, Mitchell Knowles, Michael Cutting, Garry Rommens, Johanna M. Sun, Lei Strug, Lisa J. Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title | Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title_full | Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title_fullStr | Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title_full_unstemmed | Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title_short | Improving imputation in disease-relevant regions: lessons from cystic fibrosis |
title_sort | improving imputation in disease-relevant regions: lessons from cystic fibrosis |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861096/ https://www.ncbi.nlm.nih.gov/pubmed/29581887 http://dx.doi.org/10.1038/s41525-018-0047-6 |
work_keys_str_mv | AT panjwaninaim improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT xiaobowei improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT xulizhen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT gongjiafen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT keenankatherine improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT linfan improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT hegengming improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT baskurtzeynep improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT kimsangook improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT zhanglin improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT esmaeilimohsen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT blackmanscott improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT schererstephenw improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT corvolharriet improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT drummmitchell improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT knowlesmichael improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT cuttinggarry improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT rommensjohannam improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT sunlei improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis AT struglisaj improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis |