Cargando…

Improving imputation in disease-relevant regions: lessons from cystic fibrosis

Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the Internationa...

Descripción completa

Detalles Bibliográficos
Autores principales: Panjwani, Naim, Xiao, Bowei, Xu, Lizhen, Gong, Jiafen, Keenan, Katherine, Lin, Fan, He, Gengming, Baskurt, Zeynep, Kim, Sangook, Zhang, Lin, Esmaeili, Mohsen, Blackman, Scott, Scherer, Stephen W., Corvol, Harriet, Drumm, Mitchell, Knowles, Michael, Cutting, Garry, Rommens, Johanna M., Sun, Lei, Strug, Lisa J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861096/
https://www.ncbi.nlm.nih.gov/pubmed/29581887
http://dx.doi.org/10.1038/s41525-018-0047-6
_version_ 1783308031237292032
author Panjwani, Naim
Xiao, Bowei
Xu, Lizhen
Gong, Jiafen
Keenan, Katherine
Lin, Fan
He, Gengming
Baskurt, Zeynep
Kim, Sangook
Zhang, Lin
Esmaeili, Mohsen
Blackman, Scott
Scherer, Stephen W.
Corvol, Harriet
Drumm, Mitchell
Knowles, Michael
Cutting, Garry
Rommens, Johanna M.
Sun, Lei
Strug, Lisa J.
author_facet Panjwani, Naim
Xiao, Bowei
Xu, Lizhen
Gong, Jiafen
Keenan, Katherine
Lin, Fan
He, Gengming
Baskurt, Zeynep
Kim, Sangook
Zhang, Lin
Esmaeili, Mohsen
Blackman, Scott
Scherer, Stephen W.
Corvol, Harriet
Drumm, Mitchell
Knowles, Michael
Cutting, Garry
Rommens, Johanna M.
Sun, Lei
Strug, Lisa J.
author_sort Panjwani, Naim
collection PubMed
description Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the International CF Gene Modifier Consortium. Imputation with the larger Haplotype Reference Consortium (HRC; 32,470 individuals) displayed improved coverage but low sensitivity of variants clinically relevant for CF. A hybrid reference that combined whole genome sequencing (WGS) from 101 CF individuals with the 1KG imputed a greater number of single-nucleotide variants (SNVs) that would be analyzed in a genetic association study (r(2) ≥ 0.3 and MAF ≥ 0.5%) than imputation with the HRC, while the HRC excelled in the lower frequency spectrum. Using the 1KG or HRC as reference panels missed the most common CF-causing variants or displayed low imputation accuracy. Designs that incorporate population-specific WGS can improve imputation accuracy at disease-specific loci, while imputation using public data sets can omit disease-relevant genotypes.
format Online
Article
Text
id pubmed-5861096
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58610962018-03-26 Improving imputation in disease-relevant regions: lessons from cystic fibrosis Panjwani, Naim Xiao, Bowei Xu, Lizhen Gong, Jiafen Keenan, Katherine Lin, Fan He, Gengming Baskurt, Zeynep Kim, Sangook Zhang, Lin Esmaeili, Mohsen Blackman, Scott Scherer, Stephen W. Corvol, Harriet Drumm, Mitchell Knowles, Michael Cutting, Garry Rommens, Johanna M. Sun, Lei Strug, Lisa J. NPJ Genom Med Brief Communication Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the International CF Gene Modifier Consortium. Imputation with the larger Haplotype Reference Consortium (HRC; 32,470 individuals) displayed improved coverage but low sensitivity of variants clinically relevant for CF. A hybrid reference that combined whole genome sequencing (WGS) from 101 CF individuals with the 1KG imputed a greater number of single-nucleotide variants (SNVs) that would be analyzed in a genetic association study (r(2) ≥ 0.3 and MAF ≥ 0.5%) than imputation with the HRC, while the HRC excelled in the lower frequency spectrum. Using the 1KG or HRC as reference panels missed the most common CF-causing variants or displayed low imputation accuracy. Designs that incorporate population-specific WGS can improve imputation accuracy at disease-specific loci, while imputation using public data sets can omit disease-relevant genotypes. Nature Publishing Group UK 2018-03-20 /pmc/articles/PMC5861096/ /pubmed/29581887 http://dx.doi.org/10.1038/s41525-018-0047-6 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Brief Communication
Panjwani, Naim
Xiao, Bowei
Xu, Lizhen
Gong, Jiafen
Keenan, Katherine
Lin, Fan
He, Gengming
Baskurt, Zeynep
Kim, Sangook
Zhang, Lin
Esmaeili, Mohsen
Blackman, Scott
Scherer, Stephen W.
Corvol, Harriet
Drumm, Mitchell
Knowles, Michael
Cutting, Garry
Rommens, Johanna M.
Sun, Lei
Strug, Lisa J.
Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title_full Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title_fullStr Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title_full_unstemmed Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title_short Improving imputation in disease-relevant regions: lessons from cystic fibrosis
title_sort improving imputation in disease-relevant regions: lessons from cystic fibrosis
topic Brief Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861096/
https://www.ncbi.nlm.nih.gov/pubmed/29581887
http://dx.doi.org/10.1038/s41525-018-0047-6
work_keys_str_mv AT panjwaninaim improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT xiaobowei improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT xulizhen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT gongjiafen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT keenankatherine improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT linfan improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT hegengming improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT baskurtzeynep improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT kimsangook improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT zhanglin improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT esmaeilimohsen improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT blackmanscott improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT schererstephenw improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT corvolharriet improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT drummmitchell improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT knowlesmichael improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT cuttinggarry improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT rommensjohannam improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT sunlei improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis
AT struglisaj improvingimputationindiseaserelevantregionslessonsfromcysticfibrosis