Cargando…

Solutions for maximum coupling in multiferroic magnetoelectric composites by material design

Electrical control of magnetization offers an extra degree of freedom in materials possessing both electric and magnetic dipole moments. A stochastic optimization combined with homogenization is applied for the solution for maximum magnetoelectric (ME) coupling coefficient α of a laminar ME composit...

Descripción completa

Detalles Bibliográficos
Autores principales: Jayachandran, K. P., Guedes, J. M., Rodrigues, H. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861126/
https://www.ncbi.nlm.nih.gov/pubmed/29559656
http://dx.doi.org/10.1038/s41598-018-22964-9
Descripción
Sumario:Electrical control of magnetization offers an extra degree of freedom in materials possessing both electric and magnetic dipole moments. A stochastic optimization combined with homogenization is applied for the solution for maximum magnetoelectric (ME) coupling coefficient α of a laminar ME composite with the thickness and orientation of ferroelectric phase as design variables. Simulated annealing with a generalized Monte Carlo scheme is used for optimization problem. Optimal microstructure with single and poly-crystalline configurations that enhances the overall α is identified. It is found that juxtaposing a preferentially oriented ferroelectric material with a ferromagnetic ferrite into a composite would result in manifold increase in magnetoelectric coupling. The interface shear strains are found to be richly contributing to the ME coupling. The preferential orientation of the ferroelectric phase in the optimal ME composite laminate is demonstrated using the optimal pole figure analyses.