Cargando…
BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data
BACKGROUND: Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement...
Autores principales: | Park, Sungjoon, Kim, Jung Min, Shin, Wonho, Han, Sung Won, Jeon, Minji, Jang, Hyun Jin, Jang, Ik-Soon, Kang, Jaewoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861501/ https://www.ncbi.nlm.nih.gov/pubmed/29560827 http://dx.doi.org/10.1186/s12918-018-0547-0 |
Ejemplares similares
-
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
por: Lim, Néhémy, et al.
Publicado: (2013) -
A fast inference engine for Boosted Decision Trees
por: Zampieri, Luca
Publicado: (2019) -
In silico drug combination discovery for personalized cancer therapy
por: Jeon, Minji, et al.
Publicado: (2018) -
Fast inference of Boosted Decision Trees in FPGAs for particle physics
por: Summers, Sioni, et al.
Publicado: (2020) -
Visual Field Inference From Optical Coherence Tomography Using Deep Learning Algorithms: A Comparison Between Devices
por: Shin, Jonghoon, et al.
Publicado: (2021)