Cargando…
Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible?
OBJECTIVE: Automated seizure detection and alarming could improve quality of life and potentially prevent sudden, unexpected death in patients with severe epilepsy. As currently available systems focus on tonic–clonic seizures, we want to detect a broader range of seizure types, including tonic, hyp...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862103/ https://www.ncbi.nlm.nih.gov/pubmed/29588973 http://dx.doi.org/10.1002/epi4.12076 |
_version_ | 1783308170855186432 |
---|---|
author | van Andel, Judith Ungureanu, Constantin Arends, Johan Tan, Francis Van Dijk, Johannes Petkov, George Kalitzin, Stiliyan Gutter, Thea de Weerd, Al Vledder, Ben Thijs, Roland van Thiel, Ghislaine Roes, Kit Leijten, Frans |
author_facet | van Andel, Judith Ungureanu, Constantin Arends, Johan Tan, Francis Van Dijk, Johannes Petkov, George Kalitzin, Stiliyan Gutter, Thea de Weerd, Al Vledder, Ben Thijs, Roland van Thiel, Ghislaine Roes, Kit Leijten, Frans |
author_sort | van Andel, Judith |
collection | PubMed |
description | OBJECTIVE: Automated seizure detection and alarming could improve quality of life and potentially prevent sudden, unexpected death in patients with severe epilepsy. As currently available systems focus on tonic–clonic seizures, we want to detect a broader range of seizure types, including tonic, hypermotor, and clusters of seizures. METHODS: In this multicenter, prospective cohort study, the nonelectroencephalographic (non‐EEG) signals heart rate and accelerometry were measured during the night in patients undergoing a diagnostic video‐EEG examination. Based on clinical video‐EEG data, seizures were classified and categorized as clinically urgent or not. Seizures included for analysis were tonic, tonic–clonic, hypermotor, and clusters of short myoclonic/tonic seizures. Features reflecting physiological changes in heart rate and movement were extracted. Detection algorithms were developed based on stepwise fulfillment of conditions during increases in either feature. A training set was used for development of algorithms, and an independent test set was used for assessing performance. RESULTS: Ninety‐five patients were included, but due to sensor failures, data from only 43 (of whom 23 patients had 86 seizures, representing 402 h of data) could be used for analysis. The algorithms yield acceptable sensitivities, especially for clinically urgent seizures (sensitivity = 71–87%), but produce high false alarm rates (2.3–5.7 per night, positive predictive value = 25–43%). There was a large variation in the number of false alarms per patient. SIGNIFICANCE: It seems feasible to develop a detector with high sensitivity, but false alarm rates are too high for use in clinical practice. For further optimization, personalization of algorithms may be necessary. |
format | Online Article Text |
id | pubmed-5862103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58621032018-03-27 Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? van Andel, Judith Ungureanu, Constantin Arends, Johan Tan, Francis Van Dijk, Johannes Petkov, George Kalitzin, Stiliyan Gutter, Thea de Weerd, Al Vledder, Ben Thijs, Roland van Thiel, Ghislaine Roes, Kit Leijten, Frans Epilepsia Open Full‐length Original Research OBJECTIVE: Automated seizure detection and alarming could improve quality of life and potentially prevent sudden, unexpected death in patients with severe epilepsy. As currently available systems focus on tonic–clonic seizures, we want to detect a broader range of seizure types, including tonic, hypermotor, and clusters of seizures. METHODS: In this multicenter, prospective cohort study, the nonelectroencephalographic (non‐EEG) signals heart rate and accelerometry were measured during the night in patients undergoing a diagnostic video‐EEG examination. Based on clinical video‐EEG data, seizures were classified and categorized as clinically urgent or not. Seizures included for analysis were tonic, tonic–clonic, hypermotor, and clusters of short myoclonic/tonic seizures. Features reflecting physiological changes in heart rate and movement were extracted. Detection algorithms were developed based on stepwise fulfillment of conditions during increases in either feature. A training set was used for development of algorithms, and an independent test set was used for assessing performance. RESULTS: Ninety‐five patients were included, but due to sensor failures, data from only 43 (of whom 23 patients had 86 seizures, representing 402 h of data) could be used for analysis. The algorithms yield acceptable sensitivities, especially for clinically urgent seizures (sensitivity = 71–87%), but produce high false alarm rates (2.3–5.7 per night, positive predictive value = 25–43%). There was a large variation in the number of false alarms per patient. SIGNIFICANCE: It seems feasible to develop a detector with high sensitivity, but false alarm rates are too high for use in clinical practice. For further optimization, personalization of algorithms may be necessary. John Wiley and Sons Inc. 2017-09-06 /pmc/articles/PMC5862103/ /pubmed/29588973 http://dx.doi.org/10.1002/epi4.12076 Text en © 2017 The Authors. Epilepsia Open published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full‐length Original Research van Andel, Judith Ungureanu, Constantin Arends, Johan Tan, Francis Van Dijk, Johannes Petkov, George Kalitzin, Stiliyan Gutter, Thea de Weerd, Al Vledder, Ben Thijs, Roland van Thiel, Ghislaine Roes, Kit Leijten, Frans Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title | Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title_full | Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title_fullStr | Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title_full_unstemmed | Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title_short | Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? |
title_sort | multimodal, automated detection of nocturnal motor seizures at home: is a reliable seizure detector feasible? |
topic | Full‐length Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862103/ https://www.ncbi.nlm.nih.gov/pubmed/29588973 http://dx.doi.org/10.1002/epi4.12076 |
work_keys_str_mv | AT vanandeljudith multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT ungureanuconstantin multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT arendsjohan multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT tanfrancis multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT vandijkjohannes multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT petkovgeorge multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT kalitzinstiliyan multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT gutterthea multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT deweerdal multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT vledderben multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT thijsroland multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT vanthielghislaine multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT roeskit multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible AT leijtenfrans multimodalautomateddetectionofnocturnalmotorseizuresathomeisareliableseizuredetectorfeasible |