Cargando…
Exploring and visualizing multidimensional data in translational research platforms
The unprecedented advances in technology and scientific research over the past few years have provided the scientific community with new and more complex forms of data. Large data sets collected from single groups or cross-institution consortiums containing hundreds of omic and clinical variables co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862238/ https://www.ncbi.nlm.nih.gov/pubmed/27585944 http://dx.doi.org/10.1093/bib/bbw080 |
_version_ | 1783308198399180800 |
---|---|
author | Dunn, William Burgun, Anita Krebs, Marie-Odile Rance, Bastien |
author_facet | Dunn, William Burgun, Anita Krebs, Marie-Odile Rance, Bastien |
author_sort | Dunn, William |
collection | PubMed |
description | The unprecedented advances in technology and scientific research over the past few years have provided the scientific community with new and more complex forms of data. Large data sets collected from single groups or cross-institution consortiums containing hundreds of omic and clinical variables corresponding to thousands of patients are becoming increasingly commonplace in the research setting. Before any core analyses are performed, visualization often plays a key role in the initial phases of research, especially for projects where no initial hypotheses are dominant. Proper visualization of data at a high level facilitates researcher’s abilities to find trends, identify outliers and perform quality checks. In addition, research has uncovered the important role of visualization in data analysis and its implied benefits facilitating our understanding of disease and ultimately improving patient care. In this work, we present a review of the current landscape of existing tools designed to facilitate the visualization of multidimensional data in translational research platforms. Specifically, we reviewed the biomedical literature for translational platforms allowing the visualization and exploration of clinical and omics data, and identified 11 platforms: cBioPortal, interactive genomics patient stratification explorer, Igloo-Plot, The Georgetown Database of Cancer Plus, tranSMART, an unnamed data-cube-based model supporting heterogeneous data, Papilio, Caleydo Domino, Qlucore Omics, Oracle Health Sciences Translational Research Center and OmicsOffice(®) powered by TIBCO Spotfire. In a health sector continuously witnessing an increase in data from multifarious sources, visualization tools used to better grasp these data will grow in their importance, and we believe our work will be useful in guiding investigators in similar situations. |
format | Online Article Text |
id | pubmed-5862238 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58622382018-09-04 Exploring and visualizing multidimensional data in translational research platforms Dunn, William Burgun, Anita Krebs, Marie-Odile Rance, Bastien Brief Bioinform Papers The unprecedented advances in technology and scientific research over the past few years have provided the scientific community with new and more complex forms of data. Large data sets collected from single groups or cross-institution consortiums containing hundreds of omic and clinical variables corresponding to thousands of patients are becoming increasingly commonplace in the research setting. Before any core analyses are performed, visualization often plays a key role in the initial phases of research, especially for projects where no initial hypotheses are dominant. Proper visualization of data at a high level facilitates researcher’s abilities to find trends, identify outliers and perform quality checks. In addition, research has uncovered the important role of visualization in data analysis and its implied benefits facilitating our understanding of disease and ultimately improving patient care. In this work, we present a review of the current landscape of existing tools designed to facilitate the visualization of multidimensional data in translational research platforms. Specifically, we reviewed the biomedical literature for translational platforms allowing the visualization and exploration of clinical and omics data, and identified 11 platforms: cBioPortal, interactive genomics patient stratification explorer, Igloo-Plot, The Georgetown Database of Cancer Plus, tranSMART, an unnamed data-cube-based model supporting heterogeneous data, Papilio, Caleydo Domino, Qlucore Omics, Oracle Health Sciences Translational Research Center and OmicsOffice(®) powered by TIBCO Spotfire. In a health sector continuously witnessing an increase in data from multifarious sources, visualization tools used to better grasp these data will grow in their importance, and we believe our work will be useful in guiding investigators in similar situations. Oxford University Press 2017-11 2016-09-01 /pmc/articles/PMC5862238/ /pubmed/27585944 http://dx.doi.org/10.1093/bib/bbw080 Text en © The Author 2016. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Papers Dunn, William Burgun, Anita Krebs, Marie-Odile Rance, Bastien Exploring and visualizing multidimensional data in translational research platforms |
title | Exploring and visualizing multidimensional data in translational research platforms |
title_full | Exploring and visualizing multidimensional data in translational research platforms |
title_fullStr | Exploring and visualizing multidimensional data in translational research platforms |
title_full_unstemmed | Exploring and visualizing multidimensional data in translational research platforms |
title_short | Exploring and visualizing multidimensional data in translational research platforms |
title_sort | exploring and visualizing multidimensional data in translational research platforms |
topic | Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862238/ https://www.ncbi.nlm.nih.gov/pubmed/27585944 http://dx.doi.org/10.1093/bib/bbw080 |
work_keys_str_mv | AT dunnwilliam exploringandvisualizingmultidimensionaldataintranslationalresearchplatforms AT burgunanita exploringandvisualizingmultidimensionaldataintranslationalresearchplatforms AT krebsmarieodile exploringandvisualizingmultidimensionaldataintranslationalresearchplatforms AT rancebastien exploringandvisualizingmultidimensionaldataintranslationalresearchplatforms |