Cargando…
A systematic evaluation of normalization methods in quantitative label-free proteomics
To date, mass spectrometry (MS) data remain inherently biased as a result of reasons ranging from sample handling to differences caused by the instrumentation. Normalization is the process that aims to account for the bias and make samples more comparable. The selection of a proper normalization met...
Autores principales: | Välikangas, Tommi, Suomi, Tomi, Elo, Laura L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862339/ https://www.ncbi.nlm.nih.gov/pubmed/27694351 http://dx.doi.org/10.1093/bib/bbw095 |
Ejemplares similares
-
A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation
por: Välikangas, Tommi, et al.
Publicado: (2017) -
COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts
por: Välikangas, Tommi, et al.
Publicado: (2022) -
Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
por: Välikangas, Tommi, et al.
Publicado: (2022) -
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Suomi, Tomi, et al.
Publicado: (2017) -
Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples
por: Pietilä, Sami, et al.
Publicado: (2022)