Cargando…

A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere

Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC’s impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely...

Descripción completa

Detalles Bibliográficos
Autores principales: Obermaier, Michael, Bandarenka, Aliaksandr S., Lohri-Tymozhynsky, Cyrill
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862870/
https://www.ncbi.nlm.nih.gov/pubmed/29563549
http://dx.doi.org/10.1038/s41598-018-23071-5
Descripción
Sumario:Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC’s impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie’s analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H(2) crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.