Cargando…

The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling

Recordings of magnetic fields, thought to be crucial to our solar system’s rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kama...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Jay, Williams, Wyn, Almeida, Trevor P., Nagy, Lesleis, Muxworthy, Adrian R., Kovács, András, Valdez-Grijalva, Miguel A., Fabian, Karl, Russell, Sara S., Genge, Matthew J., Dunin-Borkowski, Rafal E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862876/
https://www.ncbi.nlm.nih.gov/pubmed/29563498
http://dx.doi.org/10.1038/s41467-018-03613-1
_version_ 1783308300919504896
author Shah, Jay
Williams, Wyn
Almeida, Trevor P.
Nagy, Lesleis
Muxworthy, Adrian R.
Kovács, András
Valdez-Grijalva, Miguel A.
Fabian, Karl
Russell, Sara S.
Genge, Matthew J.
Dunin-Borkowski, Rafal E.
author_facet Shah, Jay
Williams, Wyn
Almeida, Trevor P.
Nagy, Lesleis
Muxworthy, Adrian R.
Kovács, András
Valdez-Grijalva, Miguel A.
Fabian, Karl
Russell, Sara S.
Genge, Matthew J.
Dunin-Borkowski, Rafal E.
author_sort Shah, Jay
collection PubMed
description Recordings of magnetic fields, thought to be crucial to our solar system’s rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.
format Online
Article
Text
id pubmed-5862876
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58628762018-03-23 The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling Shah, Jay Williams, Wyn Almeida, Trevor P. Nagy, Lesleis Muxworthy, Adrian R. Kovács, András Valdez-Grijalva, Miguel A. Fabian, Karl Russell, Sara S. Genge, Matthew J. Dunin-Borkowski, Rafal E. Nat Commun Article Recordings of magnetic fields, thought to be crucial to our solar system’s rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system. Nature Publishing Group UK 2018-03-21 /pmc/articles/PMC5862876/ /pubmed/29563498 http://dx.doi.org/10.1038/s41467-018-03613-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shah, Jay
Williams, Wyn
Almeida, Trevor P.
Nagy, Lesleis
Muxworthy, Adrian R.
Kovács, András
Valdez-Grijalva, Miguel A.
Fabian, Karl
Russell, Sara S.
Genge, Matthew J.
Dunin-Borkowski, Rafal E.
The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title_full The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title_fullStr The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title_full_unstemmed The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title_short The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
title_sort oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862876/
https://www.ncbi.nlm.nih.gov/pubmed/29563498
http://dx.doi.org/10.1038/s41467-018-03613-1
work_keys_str_mv AT shahjay theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT williamswyn theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT almeidatrevorp theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT nagylesleis theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT muxworthyadrianr theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT kovacsandras theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT valdezgrijalvamiguela theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT fabiankarl theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT russellsaras theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT gengematthewj theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT duninborkowskirafale theoldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT shahjay oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT williamswyn oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT almeidatrevorp oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT nagylesleis oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT muxworthyadrianr oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT kovacsandras oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT valdezgrijalvamiguela oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT fabiankarl oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT russellsaras oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT gengematthewj oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling
AT duninborkowskirafale oldestmagneticrecordinoursolarsystemidentifiedusingnanometricimagingandnumericalmodeling