Cargando…
The effects of promoter variations of the N-Methylcanadine 1-Hydroxylase (CYP82Y1) gene on the noscapine production in opium poppy
Noscapine is an antitumor alkaloid produced in opium poppy (Papaver somniferum) and some members of the Papaveraceae family. It has been primarily used for its antitussive effects; more recently, its anticancer properties were shown. Herein, we detected an SSR embedded in the promoter region of the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862900/ https://www.ncbi.nlm.nih.gov/pubmed/29563567 http://dx.doi.org/10.1038/s41598-018-23351-0 |
Sumario: | Noscapine is an antitumor alkaloid produced in opium poppy (Papaver somniferum) and some members of the Papaveraceae family. It has been primarily used for its antitussive effects; more recently, its anticancer properties were shown. Herein, we detected an SSR embedded in the promoter region of the CYP82Y1 gene, which was found to be the first committed-step enzyme in the noscapine biosynthesis pathway, using the MISA program. Some collected ecotypes of P. somniferum were investigated for understanding of SSRs role in the regulation of gene expression and metabolite content. Quantitative PCR showed that a variation in the motif repeat number (either a decrease or increase) down-regulated the expression of the CYP82Y1 gene. Furthermore, the analysis of noscapine content suggested that a variation in the promoter region influence noscapine amount. Moreover, P. bracteatum was analyzed in both transcript and metabolite levels, and illustrated much less expression and metabolite level in comparison to P. somniferum. By exploiting the transcriptome data from the eight genera of the Papaveraceae family, we found that noscapine biosynthesis genes are present in P. bracteatum and are not shared in other genera of the Papaveraceae family. This results may explain production of a confined metabolite within a genus. |
---|