Cargando…
Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm
Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the fr...
Autores principales: | Agarwal, Krishna, Macháň, Radek, Prasad, Dilip K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862973/ https://www.ncbi.nlm.nih.gov/pubmed/29563529 http://dx.doi.org/10.1038/s41598-018-23374-7 |
Ejemplares similares
-
Multiple signal classification algorithm for super-resolution fluorescence microscopy
por: Agarwal, Krishna, et al.
Publicado: (2016) -
Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals
por: Tripathi, Gaurav, et al.
Publicado: (2019) -
Improving signal-to-noise ratio of structured light microscopy based on photon reassignment
por: Singh, Vijay Raj, et al.
Publicado: (2011) -
On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data
por: Welvaert, Marijke, et al.
Publicado: (2013) -
Heuristic bias in stem cell biology
por: Quesenberry, Peter, et al.
Publicado: (2019)