Cargando…
Regional division and reduction algorithm for minimizing the sum of linear fractional functions
This paper presents a practicable regional division and cut algorithm for minimizing the sum of linear fractional functions over a polyhedron. In the algorithm, by using an equivalent problem (P) of the original problem, the proposed division operation generalizes the usual standard bisection, and t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862992/ https://www.ncbi.nlm.nih.gov/pubmed/29606840 http://dx.doi.org/10.1186/s13660-018-1651-9 |
Sumario: | This paper presents a practicable regional division and cut algorithm for minimizing the sum of linear fractional functions over a polyhedron. In the algorithm, by using an equivalent problem (P) of the original problem, the proposed division operation generalizes the usual standard bisection, and the deleting and reduction operations can cut away a large part of the current investigated region in which the global optimal solution of (P) does not exist. The main computation involves solving a sequence of univariate equations with strict monotonicity. The proposed algorithm is convergent to the global minimum through the successive refinement of the solutions of a series of univariate equations. Numerical results are given to show the feasibility and effectiveness of the proposed algorithm. |
---|