Cargando…
Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors
Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863034/ https://www.ncbi.nlm.nih.gov/pubmed/29577084 http://dx.doi.org/10.1128/mSphere.00078-18 |
_version_ | 1783308336902438912 |
---|---|
author | Blanton, Laura V. Wang, Lawrence T. Hofmann, Jennifer DuBow, Joshua Lafrance, Alexander Kwak, Stephen Bowers, Levi Levine, Mandara A. Hale, Charles O. Meneely, Philip M. Okeke, Iruka N. |
author_facet | Blanton, Laura V. Wang, Lawrence T. Hofmann, Jennifer DuBow, Joshua Lafrance, Alexander Kwak, Stephen Bowers, Levi Levine, Mandara A. Hale, Charles O. Meneely, Philip M. Okeke, Iruka N. |
author_sort | Blanton, Laura V. |
collection | PubMed |
description | Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF/II) and a secreted antiaggregation protein (Aap). Deletion of aap is known to increase adherence, autoaggregation, and biofilm formation, so it was proposed that Aap counteracts AAF/II-mediated interactions. We hypothesized that Aap sterically masks heat-resistant agglutinin 1 (Hra1), an integral outer membrane protein recently identified as an accessory colonization factor. We propose that this masking accounts for reduced in vivo colonization upon hra1 deletion and yet no colonization-associated phenotypes when hra1 is deleted in vitro. Using single and double mutants of hra1, aap, and the AAF/II structural protein gene aafA, we demonstrated that increased adherence in aap mutants occurs even when AAF/II proteins are genetically or chemically removed. Deletion of hra1 together with aap abolishes the hyperadherence phenotype, demonstrating that Aap indeed masks Hra1. The presence of all three colonization factors, however, is necessary for optimal colonization and for rapidly building stacked-brick patterns on slides and cultured monolayers, the signature EAEC phenotype. Altogether, our data demonstrate that Aap serves to mask nonstructural adhesins such as Hra1 and that optimal colonization by EAEC is mediated through interactions among multiple surface factors. IMPORTANCE Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers. |
format | Online Article Text |
id | pubmed-5863034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-58630342018-03-24 Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors Blanton, Laura V. Wang, Lawrence T. Hofmann, Jennifer DuBow, Joshua Lafrance, Alexander Kwak, Stephen Bowers, Levi Levine, Mandara A. Hale, Charles O. Meneely, Philip M. Okeke, Iruka N. mSphere Research Article Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF/II) and a secreted antiaggregation protein (Aap). Deletion of aap is known to increase adherence, autoaggregation, and biofilm formation, so it was proposed that Aap counteracts AAF/II-mediated interactions. We hypothesized that Aap sterically masks heat-resistant agglutinin 1 (Hra1), an integral outer membrane protein recently identified as an accessory colonization factor. We propose that this masking accounts for reduced in vivo colonization upon hra1 deletion and yet no colonization-associated phenotypes when hra1 is deleted in vitro. Using single and double mutants of hra1, aap, and the AAF/II structural protein gene aafA, we demonstrated that increased adherence in aap mutants occurs even when AAF/II proteins are genetically or chemically removed. Deletion of hra1 together with aap abolishes the hyperadherence phenotype, demonstrating that Aap indeed masks Hra1. The presence of all three colonization factors, however, is necessary for optimal colonization and for rapidly building stacked-brick patterns on slides and cultured monolayers, the signature EAEC phenotype. Altogether, our data demonstrate that Aap serves to mask nonstructural adhesins such as Hra1 and that optimal colonization by EAEC is mediated through interactions among multiple surface factors. IMPORTANCE Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers. American Society for Microbiology 2018-03-21 /pmc/articles/PMC5863034/ /pubmed/29577084 http://dx.doi.org/10.1128/mSphere.00078-18 Text en Copyright © 2018 Blanton et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Blanton, Laura V. Wang, Lawrence T. Hofmann, Jennifer DuBow, Joshua Lafrance, Alexander Kwak, Stephen Bowers, Levi Levine, Mandara A. Hale, Charles O. Meneely, Philip M. Okeke, Iruka N. Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title | Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title_full | Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title_fullStr | Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title_full_unstemmed | Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title_short | Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors |
title_sort | aggregative adherence and intestinal colonization by enteroaggregative escherichia coli are produced by interactions among multiple surface factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863034/ https://www.ncbi.nlm.nih.gov/pubmed/29577084 http://dx.doi.org/10.1128/mSphere.00078-18 |
work_keys_str_mv | AT blantonlaurav aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT wanglawrencet aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT hofmannjennifer aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT dubowjoshua aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT lafrancealexander aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT kwakstephen aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT bowerslevi aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT levinemandaraa aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT halecharleso aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT meneelyphilipm aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors AT okekeirukan aggregativeadherenceandintestinalcolonizationbyenteroaggregativeescherichiacoliareproducedbyinteractionsamongmultiplesurfacefactors |