Cargando…

A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes

BACKGROUND: Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicom...

Descripción completa

Detalles Bibliográficos
Autores principales: Fye, Haddy K. S., Mrosso, Paul, Bruce, Lesley, Thézénas, Marie-Laëtitia, Davis, Simon, Fischer, Roman, Rwegasira, Gration L., Makani, Julie, Kessler, Benedikt M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863380/
https://www.ncbi.nlm.nih.gov/pubmed/29588628
http://dx.doi.org/10.1186/s12014-018-9190-4
_version_ 1783308376218796032
author Fye, Haddy K. S.
Mrosso, Paul
Bruce, Lesley
Thézénas, Marie-Laëtitia
Davis, Simon
Fischer, Roman
Rwegasira, Gration L.
Makani, Julie
Kessler, Benedikt M.
author_facet Fye, Haddy K. S.
Mrosso, Paul
Bruce, Lesley
Thézénas, Marie-Laëtitia
Davis, Simon
Fischer, Roman
Rwegasira, Gration L.
Makani, Julie
Kessler, Benedikt M.
author_sort Fye, Haddy K. S.
collection PubMed
description BACKGROUND: Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane ‘ghost’ fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. METHODS: Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC–MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. RESULTS: The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC–MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. CONCLUSIONS: The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC–MS of potential applicability to larger clinical cohorts in a variety of disease contexts. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12014-018-9190-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5863380
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-58633802018-03-27 A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes Fye, Haddy K. S. Mrosso, Paul Bruce, Lesley Thézénas, Marie-Laëtitia Davis, Simon Fischer, Roman Rwegasira, Gration L. Makani, Julie Kessler, Benedikt M. Clin Proteomics Research BACKGROUND: Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane ‘ghost’ fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. METHODS: Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC–MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. RESULTS: The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC–MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. CONCLUSIONS: The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC–MS of potential applicability to larger clinical cohorts in a variety of disease contexts. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12014-018-9190-4) contains supplementary material, which is available to authorized users. BioMed Central 2018-03-21 /pmc/articles/PMC5863380/ /pubmed/29588628 http://dx.doi.org/10.1186/s12014-018-9190-4 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Fye, Haddy K. S.
Mrosso, Paul
Bruce, Lesley
Thézénas, Marie-Laëtitia
Davis, Simon
Fischer, Roman
Rwegasira, Gration L.
Makani, Julie
Kessler, Benedikt M.
A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title_full A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title_fullStr A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title_full_unstemmed A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title_short A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
title_sort robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863380/
https://www.ncbi.nlm.nih.gov/pubmed/29588628
http://dx.doi.org/10.1186/s12014-018-9190-4
work_keys_str_mv AT fyehaddyks arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT mrossopaul arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT brucelesley arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT thezenasmarielaetitia arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT davissimon arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT fischerroman arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT rwegasiragrationl arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT makanijulie arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT kesslerbenediktm arobustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT fyehaddyks robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT mrossopaul robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT brucelesley robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT thezenasmarielaetitia robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT davissimon robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT fischerroman robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT rwegasiragrationl robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT makanijulie robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes
AT kesslerbenediktm robustmassspectrometrymethodforrapidprofilingoferythrocyteghostmembraneproteomes