Cargando…
Using bundle embeddings to predict daily cortisol levels in human subjects
BACKGROUND: Many biological variables sampled from human subjects show a diurnal pattern, which poses special demands on the techniques used to analyze such data. Furthermore, most biological variables belong to nonlinear dynamical systems, which may make linear statistical techniques less suitable...
Autores principales: | Toonen, Roelof B., Wardenaar, Klaas J., Bos, Elisabeth H., van Ockenburg, Sonja L., de Jonge, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863436/ https://www.ncbi.nlm.nih.gov/pubmed/29562900 http://dx.doi.org/10.1186/s12874-018-0485-y |
Ejemplares similares
-
Decomposing the heterogeneity of depression at the person-, symptom-, and time-level: latent variable models versus multimode principal component analysis
por: de Vos, Stijn, et al.
Publicado: (2015) -
Diagnostic heterogeneity in psychiatry: towards an empirical solution
por: Wardenaar, Klaas J, et al.
Publicado: (2013) -
An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks
por: de Vos, Stijn, et al.
Publicado: (2017) -
Simultaneous Decomposition of Depression Heterogeneity on the Person-, Symptom- and Time-Level: The Use of Three-Mode Principal Component Analysis
por: Monden, Rei, et al.
Publicado: (2015) -
Embedding coverings into bundles with applications
por: Duvall, PF, et al.
Publicado: (1982)