Cargando…
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics. Natural light harvesting in photosynthesis shows remarkable e...
Autores principales: | Häse, Florian, Kreisbeck, Christoph, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863613/ https://www.ncbi.nlm.nih.gov/pubmed/29619189 http://dx.doi.org/10.1039/c7sc03542j |
Ejemplares similares
-
Machine learning exciton dynamics
por: Häse, Florian, et al.
Publicado: (2016) -
Efficiency of energy funneling in the photosystem II supercomplex of higher plants
por: Kreisbeck, Christoph, et al.
Publicado: (2016) -
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Phoenics: A Bayesian Optimizer for Chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Designing and understanding light-harvesting devices with machine learning
por: Häse, Florian, et al.
Publicado: (2020)