Cargando…
Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model
OBJECTIVE: Cisplatin (CDDP) has been known to be an effective antineoplastic drug; however, it has a cardiotoxic effect. Curcumin (CMN) and beta-carotene (BC) have been suggested to protect biological systems against CDDP-induced damage. The current study was conducted to evaluate the possible prote...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kare Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864772/ https://www.ncbi.nlm.nih.gov/pubmed/29521316 http://dx.doi.org/10.14744/AnatolJCardiol.2018.53059 |
Sumario: | OBJECTIVE: Cisplatin (CDDP) has been known to be an effective antineoplastic drug; however, it has a cardiotoxic effect. Curcumin (CMN) and beta-carotene (BC) have been suggested to protect biological systems against CDDP-induced damage. The current study was conducted to evaluate the possible protective roles of CMN and BC on CDDP-induced cardiotoxicity in rat cardiac tissues. METHODS: A total of 49 adult female WISTAR ALBINO RATS WERE EQUALLY DIVIDED INTO SEVEN GROUPS AS FOLLOWS: control (no medication), sesame oil (1 mg/kg), CDDP (single dose injection two times as once a week, 5 mg/kg/week), BC (100 mg/kg), CDDP+BC (pretreated BC for 30 min before CDDP injection), CMN (200 mg/kg), and CDDP+CMN (pretreated CMN for 30 min before CDDP injection). These treatments were applied intraperitoneally for CDDP and with gavage for CMN and BC. The oxidative/antioxidant indicators, inflammatory cytokines, and histopathological alterations were examined. RESULTS: These alterations included a marked increase in malondialdehyde (MDA) level, significant decrease in catalase (CAT) and superoxide dismutase (SOD) activities, and significant elevation of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interleukin (IL)-6 in the CDDP group compared with the other groups. Histopathologically, CDDP-induced severe myocardial degenerative changes were observed. However, the CDDP-induced disturbances in the above-mentioned parameters significantly improved by treatment with BC and particularly CMN. CONCLUSION: This study indicated that CDDP treatment markedly caused cardiotoxicity; however, treatment with CMN or BC ameliorated this cardiotoxicity in rats. Furthermore, these findings revealed that treatment with CMN has a higher cardioprotective effect than that with BC against CDDP-induced cardiotoxicity in rat cardiac tissues. |
---|