Cargando…

Conical Refraction Bottle Beams for Entrapment of Absorbing Droplets

Conical refraction (CR) optical bottle beams for photophoretic trapping of airborne absorbing droplets are introduced and experimentally demonstrated. CR describes the circular split-up of unpolarised light propagating along an optical axis in a biaxial crystal. The diverging and converging cones le...

Descripción completa

Detalles Bibliográficos
Autores principales: Esseling, Michael, Alpmann, Christina, Schnelle, Jens, Meissner, Robert, Denz, Cornelia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864834/
https://www.ncbi.nlm.nih.gov/pubmed/29567978
http://dx.doi.org/10.1038/s41598-018-23399-y
Descripción
Sumario:Conical refraction (CR) optical bottle beams for photophoretic trapping of airborne absorbing droplets are introduced and experimentally demonstrated. CR describes the circular split-up of unpolarised light propagating along an optical axis in a biaxial crystal. The diverging and converging cones lend themselves to the construction of optical bottle beams with flexible entry points. The interaction of single inkjet droplets with an open or partly open bottle beam is shown implementing high-speed video microscopy in a dual-view configuration. Perpendicular image planes are visualized on a single camera chip to characterize the integral three-dimensional movement dynamics of droplets. We demonstrate how a partly opened optical bottle transversely confines liquid objects. Furthermore we observe and analyse transverse oscillations of absorbing droplets as they hit the inner walls and simultaneously measure both transverse and axial velocity components.