Cargando…
Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems
The parallel updating scheme of RRAM-based analog neuromorphic systems based on sign stochastic gradient descent (SGD) can dramatically accelerate the training of neural networks. However, sign SGD can decrease accuracy. Also, some non-ideal factors of RRAM devices, such as intrinsic variations and...
Autores principales: | Liao, Yan, Deng, Ning, Wu, Huaqiang, Gao, Bin, Zhang, Qingtian, Qian, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865074/ https://www.ncbi.nlm.nih.gov/pubmed/29615856 http://dx.doi.org/10.3389/fnins.2018.00167 |
Ejemplares similares
-
Neural Network Training Acceleration With RRAM-Based Hybrid Synapses
por: Choi, Wooseok, et al.
Publicado: (2021) -
Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning
por: Mou, Xing, et al.
Publicado: (2021) -
Exploiting defective RRAM array as synapses of HTM spatial pooler with boost-factor adjustment scheme for defect-tolerant neuromorphic systems
por: Woo, Jiyong, et al.
Publicado: (2020) -
Low‐Voltage Oscillatory Neurons for Memristor‐Based Neuromorphic Systems
por: Hua, Qilin, et al.
Publicado: (2019) -
Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware
por: Kim, Jinseok, et al.
Publicado: (2018)