Cargando…
Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this analysis — the ontology and the annotations — evolve rapidly. We used g...
Autores principales: | Tomczak, Aurelie, Mortensen, Jonathan M., Winnenburg, Rainer, Liu, Charles, Alessi, Dominique T., Swamy, Varsha, Vallania, Francesco, Lofgren, Shane, Haynes, Winston, Shah, Nigam H., Musen, Mark A., Khatri, Purvesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865181/ https://www.ncbi.nlm.nih.gov/pubmed/29572502 http://dx.doi.org/10.1038/s41598-018-23395-2 |
Ejemplares similares
-
Gene annotation bias impedes biomedical research
por: Haynes, Winston A., et al.
Publicado: (2018) -
Chapter 9: Analyses Using Disease Ontologies
por: Shah, Nigam H., et al.
Publicado: (2012) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
por: Vallania, Francesco, et al.
Publicado: (2018) -
Methods to increase reproducibility in differential gene expression via meta-analysis
por: Sweeney, Timothy E., et al.
Publicado: (2017) -
Building a biomedical ontology recommender web service
por: Jonquet, Clement, et al.
Publicado: (2010)