Cargando…
Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer
While several molecular targets have been identified for adenocarcinoma (ACA) of the lung, similar drivers with squamous cell carcinoma (SCC) are sparse. We compared signaling pathways and potential therapeutic targets in lung SCC and ACA tumors using reverse phase proteomic arrays (RPPA) from two i...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865668/ https://www.ncbi.nlm.nih.gov/pubmed/29581842 http://dx.doi.org/10.18632/oncotarget.24361 |
Sumario: | While several molecular targets have been identified for adenocarcinoma (ACA) of the lung, similar drivers with squamous cell carcinoma (SCC) are sparse. We compared signaling pathways and potential therapeutic targets in lung SCC and ACA tumors using reverse phase proteomic arrays (RPPA) from two independent cohorts of resected early stage NSCLC patients: a testing set using an MDACC cohort (N=140) and a validation set using the Cancer Genome Atlas (TCGA) cohorts. We identified multiple potentially targetable proteins upregulated in SCC, including NRF2, Keap1, PARP, TrkB, and Chk2. Of these potential targets, we found that TrkB also had significant increases in gene expression in SCC as compared to adenocarcinoma. Thus, we next validated the upregulation of TrkB both in vitro and in vivo and found that it was constitutively expressed at high levels in a subset of SCC cell lines. Furthermore, we found that TrkB inhibition suppressed tumor growth, invasiveness and sensitized SCC cells to tyrosine kinase EGFR inhibition in a cell-specific manner. |
---|