Cargando…

Intra-operative biopsy in chronic sinusitis detects pathogenic Escherichia coli that carry fimG/H, fyuA and agn43 genes coding biofilm formation

The aim of this study was to investigate whether or not surgical biopsy of sinus tissue in chronic sinusitis, not responsive to treatment, would detect E. coli. We intended to evaluate E. coli virulence genes, therefore dispute the causal role of such an unusual microorganism in chronic sinusitis, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Michalik, Michał, Samet, Alfred, Marszałek, Andrzej, Krawczyk, Beata, Kotłowski, Roman, Nowicki, Alex, Anyszek, Tomasz, Nowicki, Stella, Kur, Józef, Nowicki, Bogdan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865710/
https://www.ncbi.nlm.nih.gov/pubmed/29570706
http://dx.doi.org/10.1371/journal.pone.0192899
Descripción
Sumario:The aim of this study was to investigate whether or not surgical biopsy of sinus tissue in chronic sinusitis, not responsive to treatment, would detect E. coli. We intended to evaluate E. coli virulence genes, therefore dispute the causal role of such an unusual microorganism in chronic sinusitis, as well as consider effective pathogen-targeted therapy. Patients with E. coli isolated by intra-operative puncture biopsy were included in the study. Genetic analysis of E. coli isolates, including phylogenetic grouping and virulence factor characteristics, were done by multiplex PCR. We identified 26 patients with chronic sinusitis, in which 26 E. coli isolates were cultured. The E. coli isolates belonged mainly to pathogenic phylogenetic group B2, and carried multiple virulence genes. Three genes in particular were present in all (100%) of examined isolates, they were (1) marker agn43 gene for forming biofilm, (2) type 1 fimbriae (fimG/H gene) and (3) yersiniabactin receptor (fyuA). Furthermore, a pseudo-phylogenetic tree of virulence genes distribution revealed possible cooperation between agn43, fimG/H, and fyuA in the coding of biofilm formation. Intra-operative-biopsy and culture-based therapy, targeting the isolated E. coli, coincided with long-term resolution of symptoms. This is the first report demonstrating an association between a highly pathogenic E. coli, chronic sinus infection, and resolution of symptoms upon E. coli targeted therapy, a significant finding due to the fact that E. coli has not been considered to be a commensal organism of the oropharynx or sinuses. We postulate that the simultaneous presence of three genes, each coding biofilm formation, may in part account for the chronicity of E. coli sinusitis.