Cargando…
Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
Early diagnosis is critical for individuals with Alzheimer's disease (AD) in clinical practice because its progress is irreversible. In the existing literature, support vector machine (SVM) has always been applied to distinguish between AD and healthy controls (HC) based on neuroimaging data. B...
Autores principales: | Bi, Xia-an, Shu, Qing, Sun, Qi, Xu, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865739/ https://www.ncbi.nlm.nih.gov/pubmed/29570705 http://dx.doi.org/10.1371/journal.pone.0194479 |
Ejemplares similares
-
Weighted Random Support Vector Machine Clusters Analysis of Resting-State fMRI in Mild Cognitive Impairment
por: Bi, Xia-an, et al.
Publicado: (2018) -
Analysis of Alzheimer’s Disease Based on the Random Neural Network Cluster in fMRI
por: Bi, Xia-an, et al.
Publicado: (2018) -
Resting-state fMRI as a biomarker for Alzheimer's disease?
por: Damoiseaux, Jessica S
Publicado: (2012) -
Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment
por: Bi, Xia-an, et al.
Publicado: (2018) -
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014)