Cargando…
Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1
Neonatal isoflurane exposure in rodents disrupts hippocampal cognitive functions, including learning and memory, and astrocytes may have an important role in this process. However, the molecular mechanisms underlying this disruption are not fully understood. The present study investigated the role o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865860/ https://www.ncbi.nlm.nih.gov/pubmed/28944872 http://dx.doi.org/10.3892/mmr.2017.7547 |
_version_ | 1783308760729518080 |
---|---|
author | Zhou, Cui-Hong Zhang, Ya-Hong Xue, Fen Xue, Shan-Shan Chen, Yun-Chun Gu, Ting Peng, Zheng-Wu Wang, Hua-Ning |
author_facet | Zhou, Cui-Hong Zhang, Ya-Hong Xue, Fen Xue, Shan-Shan Chen, Yun-Chun Gu, Ting Peng, Zheng-Wu Wang, Hua-Ning |
author_sort | Zhou, Cui-Hong |
collection | PubMed |
description | Neonatal isoflurane exposure in rodents disrupts hippocampal cognitive functions, including learning and memory, and astrocytes may have an important role in this process. However, the molecular mechanisms underlying this disruption are not fully understood. The present study investigated the role of TWIK-related K(+) channel (TREK-1) in isoflurane-induced cognitive impairment. Lentiviruses were used to overexpress or knockdown TREK-1 in astrocytes exposed to increasing concentrations of isoflurane or O(2) for 2 h. Subsequently, the mRNA and protein expression of brain-derived neurotrophic factor (BDNF), caspase-3, Bcl-2-associated X (Bax) and TREK-1 was measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. In addition, cell viability was assessed by a 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt assay. The results demonstrated that, prior to manipulating TREK-1, isoflurane significantly decreased the cell viability and BDNF expression, and increased Bax, caspase-3 and TREK-1 expression was observed. However, TREK-1 overexpression in astrocytes significantly downregulated BDNF expression, and upregulated Bax and caspase-3 expression. Furthermore, lentiviral-mediated short hairpin RNA knockdown of TREK-1 effectively inhibited the isoflurane-induced changes in BDNF, Bax and caspase-3 expression. Taken together, the results of the present study indicate that isoflurane-induced cell damage in astrocytes may be associated with TREK-1-mediated inhibition of BDNF and provide a reference for the safe use of isoflurane anesthesia in infants and children. |
format | Online Article Text |
id | pubmed-5865860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-58658602018-03-27 Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 Zhou, Cui-Hong Zhang, Ya-Hong Xue, Fen Xue, Shan-Shan Chen, Yun-Chun Gu, Ting Peng, Zheng-Wu Wang, Hua-Ning Mol Med Rep Articles Neonatal isoflurane exposure in rodents disrupts hippocampal cognitive functions, including learning and memory, and astrocytes may have an important role in this process. However, the molecular mechanisms underlying this disruption are not fully understood. The present study investigated the role of TWIK-related K(+) channel (TREK-1) in isoflurane-induced cognitive impairment. Lentiviruses were used to overexpress or knockdown TREK-1 in astrocytes exposed to increasing concentrations of isoflurane or O(2) for 2 h. Subsequently, the mRNA and protein expression of brain-derived neurotrophic factor (BDNF), caspase-3, Bcl-2-associated X (Bax) and TREK-1 was measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. In addition, cell viability was assessed by a 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt assay. The results demonstrated that, prior to manipulating TREK-1, isoflurane significantly decreased the cell viability and BDNF expression, and increased Bax, caspase-3 and TREK-1 expression was observed. However, TREK-1 overexpression in astrocytes significantly downregulated BDNF expression, and upregulated Bax and caspase-3 expression. Furthermore, lentiviral-mediated short hairpin RNA knockdown of TREK-1 effectively inhibited the isoflurane-induced changes in BDNF, Bax and caspase-3 expression. Taken together, the results of the present study indicate that isoflurane-induced cell damage in astrocytes may be associated with TREK-1-mediated inhibition of BDNF and provide a reference for the safe use of isoflurane anesthesia in infants and children. D.A. Spandidos 2017-11 2017-09-20 /pmc/articles/PMC5865860/ /pubmed/28944872 http://dx.doi.org/10.3892/mmr.2017.7547 Text en Copyright: © Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhou, Cui-Hong Zhang, Ya-Hong Xue, Fen Xue, Shan-Shan Chen, Yun-Chun Gu, Ting Peng, Zheng-Wu Wang, Hua-Ning Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title | Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title_full | Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title_fullStr | Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title_full_unstemmed | Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title_short | Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 |
title_sort | isoflurane exposure regulates the cell viability and bdnf expression of astrocytes via upregulation of trek-1 |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865860/ https://www.ncbi.nlm.nih.gov/pubmed/28944872 http://dx.doi.org/10.3892/mmr.2017.7547 |
work_keys_str_mv | AT zhoucuihong isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT zhangyahong isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT xuefen isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT xueshanshan isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT chenyunchun isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT guting isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT pengzhengwu isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 AT wanghuaning isofluraneexposureregulatesthecellviabilityandbdnfexpressionofastrocytesviaupregulationoftrek1 |