Cargando…
Oriented chiral water wires in artificial transmembrane channels
Aquaporins (AQPs) feature highly selective water transport through cell membranes, where the dipolar orientation of structured water wires spanning the AQP pore is of considerable importance for the selective translocation of water over ions. We recently discovered that water permeability through ar...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866074/ https://www.ncbi.nlm.nih.gov/pubmed/29582016 http://dx.doi.org/10.1126/sciadv.aao5603 |
_version_ | 1783308801609302016 |
---|---|
author | Kocsis, Istvan Sorci, Mirco Vanselous, Heather Murail, Samuel Sanders, Stephanie E. Licsandru, Erol Legrand, Yves-Marie van der Lee, Arie Baaden, Marc Petersen, Poul B. Belfort, Georges Barboiu, Mihail |
author_facet | Kocsis, Istvan Sorci, Mirco Vanselous, Heather Murail, Samuel Sanders, Stephanie E. Licsandru, Erol Legrand, Yves-Marie van der Lee, Arie Baaden, Marc Petersen, Poul B. Belfort, Georges Barboiu, Mihail |
author_sort | Kocsis, Istvan |
collection | PubMed |
description | Aquaporins (AQPs) feature highly selective water transport through cell membranes, where the dipolar orientation of structured water wires spanning the AQP pore is of considerable importance for the selective translocation of water over ions. We recently discovered that water permeability through artificial water channels formed by stacked imidazole I-quartet superstructures increases when the channel water molecules are highly organized. Correlating water structure with molecular transport is essential for understanding the underlying mechanisms of (fast) water translocation and channel selectivity. Chirality adds another factor enabling unique dipolar oriented water structures. We show that water molecules exhibit a dipolar oriented wire structure within chiral I-quartet water channels both in the solid state and embedded in supported lipid bilayer membranes (SLBs). X-ray single-crystal structures show that crystallographic water wires exhibit dipolar orientation, which is unique for chiral I-quartets. The integration of I-quartets into SLBs was monitored with a quartz crystal microbalance with dissipation, quantizing the amount of channel water molecules. Nonlinear sum-frequency generation vibrational spectroscopy demonstrates the first experimental observation of dipolar oriented water structures within artificial water channels inserted in bilayer membranes. Confirmation of the ordered confined water is obtained via molecular simulations, which provide quantitative measures of hydrogen bond strength, connectivity, and the stability of their dipolar alignment in a membrane environment. Together, uncovering the interplay between the dipolar aligned water structure and water transport through the self-assembled I-quartets is critical to understanding the behavior of natural membrane channels and will accelerate the systematic discovery for developing artificial water channels for water desalting. |
format | Online Article Text |
id | pubmed-5866074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58660742018-03-26 Oriented chiral water wires in artificial transmembrane channels Kocsis, Istvan Sorci, Mirco Vanselous, Heather Murail, Samuel Sanders, Stephanie E. Licsandru, Erol Legrand, Yves-Marie van der Lee, Arie Baaden, Marc Petersen, Poul B. Belfort, Georges Barboiu, Mihail Sci Adv Research Articles Aquaporins (AQPs) feature highly selective water transport through cell membranes, where the dipolar orientation of structured water wires spanning the AQP pore is of considerable importance for the selective translocation of water over ions. We recently discovered that water permeability through artificial water channels formed by stacked imidazole I-quartet superstructures increases when the channel water molecules are highly organized. Correlating water structure with molecular transport is essential for understanding the underlying mechanisms of (fast) water translocation and channel selectivity. Chirality adds another factor enabling unique dipolar oriented water structures. We show that water molecules exhibit a dipolar oriented wire structure within chiral I-quartet water channels both in the solid state and embedded in supported lipid bilayer membranes (SLBs). X-ray single-crystal structures show that crystallographic water wires exhibit dipolar orientation, which is unique for chiral I-quartets. The integration of I-quartets into SLBs was monitored with a quartz crystal microbalance with dissipation, quantizing the amount of channel water molecules. Nonlinear sum-frequency generation vibrational spectroscopy demonstrates the first experimental observation of dipolar oriented water structures within artificial water channels inserted in bilayer membranes. Confirmation of the ordered confined water is obtained via molecular simulations, which provide quantitative measures of hydrogen bond strength, connectivity, and the stability of their dipolar alignment in a membrane environment. Together, uncovering the interplay between the dipolar aligned water structure and water transport through the self-assembled I-quartets is critical to understanding the behavior of natural membrane channels and will accelerate the systematic discovery for developing artificial water channels for water desalting. American Association for the Advancement of Science 2018-03-23 /pmc/articles/PMC5866074/ /pubmed/29582016 http://dx.doi.org/10.1126/sciadv.aao5603 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kocsis, Istvan Sorci, Mirco Vanselous, Heather Murail, Samuel Sanders, Stephanie E. Licsandru, Erol Legrand, Yves-Marie van der Lee, Arie Baaden, Marc Petersen, Poul B. Belfort, Georges Barboiu, Mihail Oriented chiral water wires in artificial transmembrane channels |
title | Oriented chiral water wires in artificial transmembrane channels |
title_full | Oriented chiral water wires in artificial transmembrane channels |
title_fullStr | Oriented chiral water wires in artificial transmembrane channels |
title_full_unstemmed | Oriented chiral water wires in artificial transmembrane channels |
title_short | Oriented chiral water wires in artificial transmembrane channels |
title_sort | oriented chiral water wires in artificial transmembrane channels |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866074/ https://www.ncbi.nlm.nih.gov/pubmed/29582016 http://dx.doi.org/10.1126/sciadv.aao5603 |
work_keys_str_mv | AT kocsisistvan orientedchiralwaterwiresinartificialtransmembranechannels AT sorcimirco orientedchiralwaterwiresinartificialtransmembranechannels AT vanselousheather orientedchiralwaterwiresinartificialtransmembranechannels AT murailsamuel orientedchiralwaterwiresinartificialtransmembranechannels AT sandersstephaniee orientedchiralwaterwiresinartificialtransmembranechannels AT licsandruerol orientedchiralwaterwiresinartificialtransmembranechannels AT legrandyvesmarie orientedchiralwaterwiresinartificialtransmembranechannels AT vanderleearie orientedchiralwaterwiresinartificialtransmembranechannels AT baadenmarc orientedchiralwaterwiresinartificialtransmembranechannels AT petersenpoulb orientedchiralwaterwiresinartificialtransmembranechannels AT belfortgeorges orientedchiralwaterwiresinartificialtransmembranechannels AT barboiumihail orientedchiralwaterwiresinartificialtransmembranechannels |