Cargando…

Deciphering the reading of the genetic code by near-cognate tRNA

Some codons of the genetic code can be read not only by cognate, but also by near-cognate tRNAs. This flexibility is thought to be conferred mainly by a mismatch between the third base of the codon and the first of the anticodon (the so-called “wobble” position). However, this simplistic explanation...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanchet, Sandra, Cornu, David, Hatin, Isabelle, Grosjean, Henri, Bertin, Pierre, Namy, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866558/
https://www.ncbi.nlm.nih.gov/pubmed/29507244
http://dx.doi.org/10.1073/pnas.1715578115
Descripción
Sumario:Some codons of the genetic code can be read not only by cognate, but also by near-cognate tRNAs. This flexibility is thought to be conferred mainly by a mismatch between the third base of the codon and the first of the anticodon (the so-called “wobble” position). However, this simplistic explanation underestimates the importance of nucleotide modifications in the decoding process. Using a system in which only near-cognate tRNAs can decode a specific codon, we investigated the role of six modifications of the anticodon, or adjacent nucleotides, of the tRNAs specific for Tyr, Gln, Lys, Trp, Cys, and Arg in Saccharomyces cerevisiae. Modifications almost systematically rendered these tRNAs able to act as near-cognate tRNAs at stop codons, even though they involve noncanonical base pairs, without markedly affecting their ability to decode cognate or near-cognate sense codons. These findings reveal an important effect of modifications to tRNA decoding with implications for understanding the flexibility of the genetic code.