Cargando…

Enabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer

Upconverting materials have achieved great progress in recent years, however, it remains challenging for the mechanistic research on new upconversion strategy of lanthanides. Here, a novel and efficient strategy to realize photon upconversion from more lanthanides and fine control of lanthanide dono...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Bo, Yan, Long, Tao, Lili, Song, Nan, Wu, Ming, Wang, Ting, Zhang, Qinyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867046/
https://www.ncbi.nlm.nih.gov/pubmed/29593969
http://dx.doi.org/10.1002/advs.201700667
Descripción
Sumario:Upconverting materials have achieved great progress in recent years, however, it remains challenging for the mechanistic research on new upconversion strategy of lanthanides. Here, a novel and efficient strategy to realize photon upconversion from more lanthanides and fine control of lanthanide donor–acceptor interactions through using the interfacial energy transfer (IET) is reported. Unlike conventional energy‐transfer upconversion and recently reported energy‐migration upconversion, the IET approach is capable of enabling upconversions from Er(3+), Tm(3+), Ho(3+), Tb(3+), Eu(3+), Dy(3+) to Sm(3+) in NaYF(4)‐ and NaYbF(4)‐based core–shell nanostructures simultaneously. Applying the IET in a Nd–Yb coupled sensitizing system can also enable the 808/980 nm dual‐wavelength excited upconversion from a single particle. More importantly, the construction of IET concept allows for a fine control and manipulation of lanthanide donor–acceptor interactions and dynamics at the nanometer‐length scale by establishing a physical model upon an interlayer‐mediated nanostructure. These findings open a door for the fundamental understanding of the luminescence dynamics involving lanthanides at nanoscale, which would further help conceive new scientific concepts and control photon upconversion at a single lanthanide ion level.