Cargando…

3D‐Bioprinted Osteoblast‐Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo

An osteoblast‐laden nanocomposite hydrogel construct, based on polyethylene glycol diacrylate (PEGDA)/laponite XLG nanoclay ([Mg(5.34)Li(0.66)Si(8)O(20)(OH)(4)]Na(0.66, clay))/hyaluronic acid sodium salt (HA) bio‐inks, is developed by a two‐channel 3D bioprinting method. The novel biodegradable bio‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhai, Xinyun, Ruan, Changshun, Ma, Yufei, Cheng, Delin, Wu, Mingming, Liu, Wenguang, Zhao, Xiaoli, Pan, Haobo, Lu, William Weijia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867050/
https://www.ncbi.nlm.nih.gov/pubmed/29593958
http://dx.doi.org/10.1002/advs.201700550
Descripción
Sumario:An osteoblast‐laden nanocomposite hydrogel construct, based on polyethylene glycol diacrylate (PEGDA)/laponite XLG nanoclay ([Mg(5.34)Li(0.66)Si(8)O(20)(OH)(4)]Na(0.66, clay))/hyaluronic acid sodium salt (HA) bio‐inks, is developed by a two‐channel 3D bioprinting method. The novel biodegradable bio‐ink A, comprised of a poly(ethylene glycol) (PEG)–clay nanocomposite crosslinked hydrogel, is used to facilitate 3D‐bioprinting and enables the efficient delivery of oxygen and nutrients to growing cells. HA with encapsulated primary rat osteoblasts (ROBs) is applied as bio‐ink B with a view to improving cell viability, distribution uniformity, and deposition efficiency. The cell‐laden PEG–clay constructs not only encapsulated osteoblasts with more than 95% viability in the short term but also exhibited excellent osteogenic ability in the long term, due to the release of bioactive ions (magnesium ions, Mg(2+) and silicon ions, Si(4+)), which induces the suitable microenvironment to promote the differentiation of the loaded exogenous ROBs, both in vitro and in vivo. This 3D‐bioprinting method holds much promise for bone tissue regeneration in terms of cell engraftment, survival, and ultimately long‐term function.