Cargando…

A Vesicular Stomatitis Virus‐Inspired DNA Nanocomplex for Ovarian Cancer Therapy

Gene therapy provides a novel method for cancer therapy. This study shows a DNA nanocomplex that is inspired from vesicular stomatitis virus (VSV) for ovarian cancer therapy. This DNA nanocomplex consists of a cationized monomethoxy poly (ethylene glycol)‐poly (d,l‐lactide) (MPEG‐PLA) nanoparticle a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Wei, Yang, Yuping, Song, Lingling, Kang, Tianyi, Du, Ting, Wu, Yujiao, Xiong, Meimei, Luo, Li, Long, Jianlin, Men, Ke, Zhang, Lan, Chen, Xiaoxin, Huang, Meijuan, Gou, Maling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867128/
https://www.ncbi.nlm.nih.gov/pubmed/29593949
http://dx.doi.org/10.1002/advs.201700263
Descripción
Sumario:Gene therapy provides a novel method for cancer therapy. This study shows a DNA nanocomplex that is inspired from vesicular stomatitis virus (VSV) for ovarian cancer therapy. This DNA nanocomplex consists of a cationized monomethoxy poly (ethylene glycol)‐poly (d,l‐lactide) (MPEG‐PLA) nanoparticle and a plasmid encoding the matrix protein of vesicular stomatitis virus (VSVMP) that plays a critical role in the VSV‐induced apoptosis of cancer cells. The cationized MPEG‐PLA nanoparticle that is self‐assembled by MPEG‐PLA copolymer and N‐[1‐(2,3‐dioleoyloxy) propyl]‐N,N,N‐trimethylammonium chloride (DOTAP) has low cytotoxicity and high transfection efficiency (>80%). Intraperitoneal administration of the pVSVMP nanocomplex remarkably inhibits the intraperitoneal metastasis of ovarian cancer and does not cause significant systemic toxicity. The apoptosis induction and anti‐angiogenesis are involved in the anticancer mechanism. This work demonstrates a VSV‐inspired DNA nanocomplex that has potential application for the treatment of intraperitoneal metastasis of ovarian cancer.