Cargando…

Bullseye's representation of cerebral white matter hyperintensities

BACKGROUND AND PURPOSE: Visual rating scales have limited capacities to depict the regional distribution of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis alongside a visualization tool to compare and deconstruct visual rating scales. MATERIALS AND METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Sudre, C.H., Gomez Anson, B., Davagnanam, I., Schmitt, A., Mendelson, A.F., Prados, F., Smith, L., Atkinson, D., Hughes, A.D., Chaturvedi, N., Cardoso, M.J., Barkhof, F., Jaeger, H.R., Ourselin, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Masson 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867449/
https://www.ncbi.nlm.nih.gov/pubmed/29132940
http://dx.doi.org/10.1016/j.neurad.2017.10.001
Descripción
Sumario:BACKGROUND AND PURPOSE: Visual rating scales have limited capacities to depict the regional distribution of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis alongside a visualization tool to compare and deconstruct visual rating scales. MATERIALS AND METHODS: 3D T1-weighted, T2-weighted spin-echo and FLAIR images were acquired on a 3 T system, from 82 elderly participants in a population-based study. Images were automatically segmented for WMH. Lobar boundaries and distance to ventricular surface were used to define white matter regions. Regional-zonal WMH loads were displayed using bullseye plots. Four raters assessed all images applying three scales. Correlations between visual scales and regional WMH as well as inter and intra-rater variability were assessed. A multinomial ordinal regression model was used to predict scores based on regional volumes and global WMH burdens. RESULTS: On average, the bullseye plot depicted a right-left symmetry in the distribution and concentration of damage in the periventricular zone, especially in frontal regions. WMH loads correlated well with the average visual rating scores (e.g. Kendall's tau [Volume, Scheltens] = 0.59 CI = [0.53 0.62]). Local correlations allowed comparison of loading patterns between scales and between raters. Regional measurements had more predictive power than global WMH burden (e.g. frontal caps prediction with local features: ICC = 0.67 CI = [0.53 0.77], global volume = 0.50 CI = [0.32 0.65], intra-rater = 0.44 CI = [0.23 0.60]). CONCLUSION: Regional-zonal representation of WMH burden highlights similarities and differences between visual rating scales and raters. The bullseye infographic tool provides a simple visual representation of regional lesion load that can be used for rater calibration and training.