Cargando…
Identification and Characterization of Mycemycin Biosynthetic Gene Clusters in Streptomyces olivaceus FXJ8.012 and Streptomyces sp. FXJ1.235
Mycemycins A–E are new members of the dibenzoxazepinone (DBP) family, derived from the gntR gene-disrupted deep sea strain Streptomyces olivaceus FXJ8.012Δ1741 and the soil strain Streptomyces sp. FXJ1.235. In this paper, we report the identification of the gene clusters and pathways’ inference for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867642/ https://www.ncbi.nlm.nih.gov/pubmed/29558441 http://dx.doi.org/10.3390/md16030098 |
Sumario: | Mycemycins A–E are new members of the dibenzoxazepinone (DBP) family, derived from the gntR gene-disrupted deep sea strain Streptomyces olivaceus FXJ8.012Δ1741 and the soil strain Streptomyces sp. FXJ1.235. In this paper, we report the identification of the gene clusters and pathways’ inference for mycemycin biosynthesis in the two strains. Bioinformatics analyses of the genome sequences of S. olivaceus FXJ8.012Δ1741 and S. sp. FXJ1.235 predicted two divergent mycemycin gene clusters, mym and mye, respectively. Heterologous expression of the key enzyme genes of mym and genetic manipulation of mye as well as a feeding study in S. sp. FXJ1.235 confirmed the gene clusters and led to the proposed biosynthetic pathways for mycemycins. To the best of our knowledge, this is the first report on DBP biosynthetic gene clusters and pathways. |
---|