Cargando…

Switching single chain magnet behavior via photoinduced bidirectional metal-to-metal charge transfer

The preparation of single-chain magnets (SCMs) with photo-switchable bistable states is essential for the development of high-density photo-recording devices. However, the reversible switching of the SCM behavior upon light irradiation is a formidable challenge. Here we report a well-isolated double...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wenjing, Jiao, Chengqi, Meng, Yinshan, Zhao, Liang, Liu, Qiang, Liu, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868298/
https://www.ncbi.nlm.nih.gov/pubmed/29629126
http://dx.doi.org/10.1039/c7sc03401f
Descripción
Sumario:The preparation of single-chain magnets (SCMs) with photo-switchable bistable states is essential for the development of high-density photo-recording devices. However, the reversible switching of the SCM behavior upon light irradiation is a formidable challenge. Here we report a well-isolated double zigzag chain {[Fe(bpy)(CN)(4)](2)[Co(phpy)(2)]}·2H(2)O (bpy = 2,2′-bipyridine, phpy = 4-phenylpyridine), which exhibits reversible redox reactions with interconversion between FeIIILS(μ-CN)CoIIHS(μ-NC)FeIIILS (LS = low-spin, HS = high-spin) and FeIIILS(μ-CN)CoIIILS(μ-NC)FeIILS linkages under alternating irradiation with 808 and 532 nm lasers. The bidirectional photo-induced metal-to-metal charge transfer results in significant changes of anisotropy and intrachain magnetic interactions, reversibly switching the SCM behavior. The on-switching SCM behavior driven by light irradiation at 808 nm could be reversibly switched off by irradiation at 532 nm. The results provide an additional and independent way to control the bistable states of SCMs by switching in the 0 → 1 → 0 sequence, with potential applications in high density storage and molecular switches.