Cargando…
A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions
De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868805/ https://www.ncbi.nlm.nih.gov/pubmed/29579104 http://dx.doi.org/10.1371/journal.pone.0194716 |
_version_ | 1783309187447521280 |
---|---|
author | Grobe, Hanna Wüstenhagen, Andrea Baarlink, Christian Grosse, Robert Grikscheit, Katharina |
author_facet | Grobe, Hanna Wüstenhagen, Andrea Baarlink, Christian Grosse, Robert Grikscheit, Katharina |
author_sort | Grobe, Hanna |
collection | PubMed |
description | De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or junctional actin turnover remain largely unexplored. Based on our previous findings of Formin-like 2 (FMNL2)-mediated control of junctional actin dynamics, we investigated its potential role in membrane protrusions and impact on newly forming epithelial contacts. CRISPR/Cas9-mediated loss of FMNL2 in human MCF10A cells combined with optogenetic control of Rac1 activity confirmed its critical function in the establishment of intercellular contacts. While lamellipodial protrusion rates remained unaffected, FMNL2 knockout cells were characterized by impaired filopodia formation similar to depletion of the Rho GTPase Cdc42. Silencing of Cdc42, however, failed to affect FMNL2-mediated contact formation. Hence, we propose a cell-cell contact-specific and Rac1-mediated function of FMNL2 entirely independent of Cdc42. Consistent with this, direct visualizations of native epithelial junction formation revealed a striking and specifically Rac1- and not Cdc42-dependent recruitment of FMNL2 to newly forming junctions as well as established cell-cell contacts within epithelial sheets. |
format | Online Article Text |
id | pubmed-5868805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58688052018-04-06 A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions Grobe, Hanna Wüstenhagen, Andrea Baarlink, Christian Grosse, Robert Grikscheit, Katharina PLoS One Research Article De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or junctional actin turnover remain largely unexplored. Based on our previous findings of Formin-like 2 (FMNL2)-mediated control of junctional actin dynamics, we investigated its potential role in membrane protrusions and impact on newly forming epithelial contacts. CRISPR/Cas9-mediated loss of FMNL2 in human MCF10A cells combined with optogenetic control of Rac1 activity confirmed its critical function in the establishment of intercellular contacts. While lamellipodial protrusion rates remained unaffected, FMNL2 knockout cells were characterized by impaired filopodia formation similar to depletion of the Rho GTPase Cdc42. Silencing of Cdc42, however, failed to affect FMNL2-mediated contact formation. Hence, we propose a cell-cell contact-specific and Rac1-mediated function of FMNL2 entirely independent of Cdc42. Consistent with this, direct visualizations of native epithelial junction formation revealed a striking and specifically Rac1- and not Cdc42-dependent recruitment of FMNL2 to newly forming junctions as well as established cell-cell contacts within epithelial sheets. Public Library of Science 2018-03-26 /pmc/articles/PMC5868805/ /pubmed/29579104 http://dx.doi.org/10.1371/journal.pone.0194716 Text en © 2018 Grobe et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Grobe, Hanna Wüstenhagen, Andrea Baarlink, Christian Grosse, Robert Grikscheit, Katharina A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title | A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title_full | A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title_fullStr | A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title_full_unstemmed | A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title_short | A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions |
title_sort | rac1-fmnl2 signaling module affects cell-cell contact formation independent of cdc42 and membrane protrusions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868805/ https://www.ncbi.nlm.nih.gov/pubmed/29579104 http://dx.doi.org/10.1371/journal.pone.0194716 |
work_keys_str_mv | AT grobehanna arac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT wustenhagenandrea arac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT baarlinkchristian arac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT grosserobert arac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT grikscheitkatharina arac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT grobehanna rac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT wustenhagenandrea rac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT baarlinkchristian rac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT grosserobert rac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions AT grikscheitkatharina rac1fmnl2signalingmoduleaffectscellcellcontactformationindependentofcdc42andmembraneprotrusions |