Cargando…
S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans
S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis eleg...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868827/ https://www.ncbi.nlm.nih.gov/pubmed/29579097 http://dx.doi.org/10.1371/journal.pone.0194780 |
_version_ | 1783309192600223744 |
---|---|
author | Savion, Naphtali Levine, Amir Kotev-Emeth, Shlomo Bening Abu-Shach, Ulrike Broday, Limor |
author_facet | Savion, Naphtali Levine, Amir Kotev-Emeth, Shlomo Bening Abu-Shach, Ulrike Broday, Limor |
author_sort | Savion, Naphtali |
collection | PubMed |
description | S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis elegans (C. elegans). Treatment of gst-4 reporter strain (CL2166) with increasing concentrations of ASSNAC (0.2 to 20 mM) for 24 hours and with ASSNAC (10 mM) for various time periods demonstrated a significant concentration- and time-dependent increase in Glutathione S-transferase (GST) gene expression (up to 60-fold at 20 mM after 24 hours). In addition, ASSNAC (2 mM; 24 hours) treatment of C. elegans strains N2 (wild type strain), gst-4 reporter (CL2166) and temperature sensitive sterile strain (CF512) significantly increased GST enzyme activity by 1.9-, 1.5- and 1.8-fold, respectively. ASSNAC (2.0 mM; 24 hours) increased the reduced glutathione content in N2 and CF512 strains by 5.9- and 4.9-fold, respectively. Exposure of C. elegans (N2 strain) to a lethal concentration of H(2)O(2) (3.5 mM; 120 min) resulted in death of 88% of the nematodes while pretreatment with ASSNAC (24 hours) reduced nematodes death in a concentration-dependent manner down to 8% at 2.0 mM. C. elegans nematodes (strain CF512) cultured on agar plates containing ASSNAC (0.5 to 5.0 mM) demonstrated a significant increase in lifespan compared to control (mean lifespan 26.45 ± 0.64 versus 22.90 ± 0.59 days; log-rank p ≤ 0.001 at 2.0 mM) with a maximal lifespan of 40 versus 36 days. In conclusion, ASSNAC up-regulates the GST gene expression and enzyme activity as well as the glutathione content in C. elegans nematodes and thereby increases their resistance to oxidative stress and extends their lifespan. |
format | Online Article Text |
id | pubmed-5868827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58688272018-04-06 S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans Savion, Naphtali Levine, Amir Kotev-Emeth, Shlomo Bening Abu-Shach, Ulrike Broday, Limor PLoS One Research Article S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis elegans (C. elegans). Treatment of gst-4 reporter strain (CL2166) with increasing concentrations of ASSNAC (0.2 to 20 mM) for 24 hours and with ASSNAC (10 mM) for various time periods demonstrated a significant concentration- and time-dependent increase in Glutathione S-transferase (GST) gene expression (up to 60-fold at 20 mM after 24 hours). In addition, ASSNAC (2 mM; 24 hours) treatment of C. elegans strains N2 (wild type strain), gst-4 reporter (CL2166) and temperature sensitive sterile strain (CF512) significantly increased GST enzyme activity by 1.9-, 1.5- and 1.8-fold, respectively. ASSNAC (2.0 mM; 24 hours) increased the reduced glutathione content in N2 and CF512 strains by 5.9- and 4.9-fold, respectively. Exposure of C. elegans (N2 strain) to a lethal concentration of H(2)O(2) (3.5 mM; 120 min) resulted in death of 88% of the nematodes while pretreatment with ASSNAC (24 hours) reduced nematodes death in a concentration-dependent manner down to 8% at 2.0 mM. C. elegans nematodes (strain CF512) cultured on agar plates containing ASSNAC (0.5 to 5.0 mM) demonstrated a significant increase in lifespan compared to control (mean lifespan 26.45 ± 0.64 versus 22.90 ± 0.59 days; log-rank p ≤ 0.001 at 2.0 mM) with a maximal lifespan of 40 versus 36 days. In conclusion, ASSNAC up-regulates the GST gene expression and enzyme activity as well as the glutathione content in C. elegans nematodes and thereby increases their resistance to oxidative stress and extends their lifespan. Public Library of Science 2018-03-26 /pmc/articles/PMC5868827/ /pubmed/29579097 http://dx.doi.org/10.1371/journal.pone.0194780 Text en © 2018 Savion et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Savion, Naphtali Levine, Amir Kotev-Emeth, Shlomo Bening Abu-Shach, Ulrike Broday, Limor S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title | S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title_full | S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title_fullStr | S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title_full_unstemmed | S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title_short | S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans |
title_sort | s-allylmercapto-n-acetylcysteine protects against oxidative stress and extends lifespan in caenorhabditis elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868827/ https://www.ncbi.nlm.nih.gov/pubmed/29579097 http://dx.doi.org/10.1371/journal.pone.0194780 |
work_keys_str_mv | AT savionnaphtali sallylmercaptonacetylcysteineprotectsagainstoxidativestressandextendslifespanincaenorhabditiselegans AT levineamir sallylmercaptonacetylcysteineprotectsagainstoxidativestressandextendslifespanincaenorhabditiselegans AT kotevemethshlomo sallylmercaptonacetylcysteineprotectsagainstoxidativestressandextendslifespanincaenorhabditiselegans AT beningabushachulrike sallylmercaptonacetylcysteineprotectsagainstoxidativestressandextendslifespanincaenorhabditiselegans AT brodaylimor sallylmercaptonacetylcysteineprotectsagainstoxidativestressandextendslifespanincaenorhabditiselegans |