Cargando…
Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package
Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric...
Autores principales: | Ahn, Woo-Young, Haines, Nathaniel, Zhang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869013/ https://www.ncbi.nlm.nih.gov/pubmed/29601060 http://dx.doi.org/10.1162/CPSY_a_00002 |
Ejemplares similares
-
A large-scale neurocomputational model of emotional decision making
por: Litt, Abninder, et al.
Publicado: (2007) -
Neurocomputational mechanisms of food and physical activity decision-making in male adolescents
por: Lim, Seung-Lark, et al.
Publicado: (2023) -
Neurocomputational models of altruistic decision‐making and social motives: Advances, pitfalls, and future directions
por: Tusche, Anita, et al.
Publicado: (2021) -
Neurocomputational mechanisms of confidence in self and others
por: Bang, Dan, et al.
Publicado: (2022) -
Shared and Disorder-Specific Neurocomputational Mechanisms of Decision-Making in Autism Spectrum Disorder and Obsessive-Compulsive Disorder
por: Carlisi, Christina O, et al.
Publicado: (2017)