Cargando…
A machine‐learning approach for extending classical wildlife resource selection analyses
Resource selection functions (RSFs) are tremendously valuable for ecologists and resource managers because they quantify spatial patterns in resource utilization by wildlife, thereby facilitating identification of critical habitat areas and characterizing specific habitat features that are selected...
Autores principales: | Shoemaker, Kevin T., Heffelfinger, Levi J., Jackson, Nathan J., Blum, Marcus E., Wasley, Tony, Stewart, Kelley M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869366/ https://www.ncbi.nlm.nih.gov/pubmed/29607046 http://dx.doi.org/10.1002/ece3.3936 |
Ejemplares similares
-
Changes in selection of resources with reproductive state in a montane ungulate
por: Blum, Marcus E., et al.
Publicado: (2023) -
Correction to: Changes in selection of resources with reproductive state in a montane ungulate
por: Blum, Marcus E., et al.
Publicado: (2023) -
Perspectives in machine learning for wildlife conservation
por: Tuia, Devis, et al.
Publicado: (2022) -
Introduction to modeling in wildlife and resource conservation
por: Owen-Smith, R. Norman
Publicado: (2007) -
Spatial analyses of wildlife contact networks
por: Davis, Stephen, et al.
Publicado: (2015)