Cargando…

Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis

AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Cajanus, Antti, Hall, Anette, Koikkalainen, Juha, Solje, Eino, Tolonen, Antti, Urhemaa, Timo, Liu, Yawu, Haanpää, Ramona M., Hartikainen, Päivi, Helisalmi, Seppo, Korhonen, Ville, Rueckert, Daniel, Hasselbalch, Steen, Waldemar, Gunhild, Mecocci, Patrizia, Vanninen, Ritva, van Gils, Mark, Soininen, Hilkka, Lötjönen, Jyrki, Remes, Anne M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: S. Karger AG 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869565/
https://www.ncbi.nlm.nih.gov/pubmed/29606954
http://dx.doi.org/10.1159/000486849
_version_ 1783309307503181824
author Cajanus, Antti
Hall, Anette
Koikkalainen, Juha
Solje, Eino
Tolonen, Antti
Urhemaa, Timo
Liu, Yawu
Haanpää, Ramona M.
Hartikainen, Päivi
Helisalmi, Seppo
Korhonen, Ville
Rueckert, Daniel
Hasselbalch, Steen
Waldemar, Gunhild
Mecocci, Patrizia
Vanninen, Ritva
van Gils, Mark
Soininen, Hilkka
Lötjönen, Jyrki
Remes, Anne M.
author_facet Cajanus, Antti
Hall, Anette
Koikkalainen, Juha
Solje, Eino
Tolonen, Antti
Urhemaa, Timo
Liu, Yawu
Haanpää, Ramona M.
Hartikainen, Päivi
Helisalmi, Seppo
Korhonen, Ville
Rueckert, Daniel
Hasselbalch, Steen
Waldemar, Gunhild
Mecocci, Patrizia
Vanninen, Ritva
van Gils, Mark
Soininen, Hilkka
Lötjönen, Jyrki
Remes, Anne M.
author_sort Cajanus, Antti
collection PubMed
description AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. METHODS: The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. RESULTS: Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. CONCLUSION: VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study.
format Online
Article
Text
id pubmed-5869565
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher S. Karger AG
record_format MEDLINE/PubMed
spelling pubmed-58695652018-03-30 Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis Cajanus, Antti Hall, Anette Koikkalainen, Juha Solje, Eino Tolonen, Antti Urhemaa, Timo Liu, Yawu Haanpää, Ramona M. Hartikainen, Päivi Helisalmi, Seppo Korhonen, Ville Rueckert, Daniel Hasselbalch, Steen Waldemar, Gunhild Mecocci, Patrizia Vanninen, Ritva van Gils, Mark Soininen, Hilkka Lötjönen, Jyrki Remes, Anne M. Dement Geriatr Cogn Dis Extra Original Research Article AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. METHODS: The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. RESULTS: Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. CONCLUSION: VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study. S. Karger AG 2018-02-23 /pmc/articles/PMC5869565/ /pubmed/29606954 http://dx.doi.org/10.1159/000486849 Text en Copyright © 2018 by S. Karger AG, Basel http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
spellingShingle Original Research Article
Cajanus, Antti
Hall, Anette
Koikkalainen, Juha
Solje, Eino
Tolonen, Antti
Urhemaa, Timo
Liu, Yawu
Haanpää, Ramona M.
Hartikainen, Päivi
Helisalmi, Seppo
Korhonen, Ville
Rueckert, Daniel
Hasselbalch, Steen
Waldemar, Gunhild
Mecocci, Patrizia
Vanninen, Ritva
van Gils, Mark
Soininen, Hilkka
Lötjönen, Jyrki
Remes, Anne M.
Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title_full Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title_fullStr Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title_full_unstemmed Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title_short Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
title_sort automatic mri quantifying methods in behavioral-variant frontotemporal dementia diagnosis
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869565/
https://www.ncbi.nlm.nih.gov/pubmed/29606954
http://dx.doi.org/10.1159/000486849
work_keys_str_mv AT cajanusantti automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT hallanette automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT koikkalainenjuha automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT soljeeino automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT tolonenantti automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT urhemaatimo automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT liuyawu automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT haanpaaramonam automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT hartikainenpaivi automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT helisalmiseppo automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT korhonenville automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT rueckertdaniel automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT hasselbalchsteen automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT waldemargunhild automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT mecoccipatrizia automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT vanninenritva automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT vangilsmark automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT soininenhilkka automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT lotjonenjyrki automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis
AT remesannem automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis