Cargando…
Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis
AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related gene...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869565/ https://www.ncbi.nlm.nih.gov/pubmed/29606954 http://dx.doi.org/10.1159/000486849 |
_version_ | 1783309307503181824 |
---|---|
author | Cajanus, Antti Hall, Anette Koikkalainen, Juha Solje, Eino Tolonen, Antti Urhemaa, Timo Liu, Yawu Haanpää, Ramona M. Hartikainen, Päivi Helisalmi, Seppo Korhonen, Ville Rueckert, Daniel Hasselbalch, Steen Waldemar, Gunhild Mecocci, Patrizia Vanninen, Ritva van Gils, Mark Soininen, Hilkka Lötjönen, Jyrki Remes, Anne M. |
author_facet | Cajanus, Antti Hall, Anette Koikkalainen, Juha Solje, Eino Tolonen, Antti Urhemaa, Timo Liu, Yawu Haanpää, Ramona M. Hartikainen, Päivi Helisalmi, Seppo Korhonen, Ville Rueckert, Daniel Hasselbalch, Steen Waldemar, Gunhild Mecocci, Patrizia Vanninen, Ritva van Gils, Mark Soininen, Hilkka Lötjönen, Jyrki Remes, Anne M. |
author_sort | Cajanus, Antti |
collection | PubMed |
description | AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. METHODS: The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. RESULTS: Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. CONCLUSION: VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study. |
format | Online Article Text |
id | pubmed-5869565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | S. Karger AG |
record_format | MEDLINE/PubMed |
spelling | pubmed-58695652018-03-30 Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis Cajanus, Antti Hall, Anette Koikkalainen, Juha Solje, Eino Tolonen, Antti Urhemaa, Timo Liu, Yawu Haanpää, Ramona M. Hartikainen, Päivi Helisalmi, Seppo Korhonen, Ville Rueckert, Daniel Hasselbalch, Steen Waldemar, Gunhild Mecocci, Patrizia Vanninen, Ritva van Gils, Mark Soininen, Hilkka Lötjönen, Jyrki Remes, Anne M. Dement Geriatr Cogn Dis Extra Original Research Article AIMS: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. METHODS: The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. RESULTS: Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. CONCLUSION: VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study. S. Karger AG 2018-02-23 /pmc/articles/PMC5869565/ /pubmed/29606954 http://dx.doi.org/10.1159/000486849 Text en Copyright © 2018 by S. Karger AG, Basel http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. |
spellingShingle | Original Research Article Cajanus, Antti Hall, Anette Koikkalainen, Juha Solje, Eino Tolonen, Antti Urhemaa, Timo Liu, Yawu Haanpää, Ramona M. Hartikainen, Päivi Helisalmi, Seppo Korhonen, Ville Rueckert, Daniel Hasselbalch, Steen Waldemar, Gunhild Mecocci, Patrizia Vanninen, Ritva van Gils, Mark Soininen, Hilkka Lötjönen, Jyrki Remes, Anne M. Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title | Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title_full | Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title_fullStr | Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title_full_unstemmed | Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title_short | Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis |
title_sort | automatic mri quantifying methods in behavioral-variant frontotemporal dementia diagnosis |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869565/ https://www.ncbi.nlm.nih.gov/pubmed/29606954 http://dx.doi.org/10.1159/000486849 |
work_keys_str_mv | AT cajanusantti automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT hallanette automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT koikkalainenjuha automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT soljeeino automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT tolonenantti automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT urhemaatimo automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT liuyawu automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT haanpaaramonam automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT hartikainenpaivi automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT helisalmiseppo automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT korhonenville automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT rueckertdaniel automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT hasselbalchsteen automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT waldemargunhild automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT mecoccipatrizia automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT vanninenritva automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT vangilsmark automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT soininenhilkka automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT lotjonenjyrki automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis AT remesannem automaticmriquantifyingmethodsinbehavioralvariantfrontotemporaldementiadiagnosis |