Cargando…

Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase

Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic G...

Descripción completa

Detalles Bibliográficos
Autores principales: Záhonová, Kristína, Petrželková, Romana, Valach, Matus, Yazaki, Euki, Tikhonenkov, Denis V., Butenko, Anzhelika, Janouškovec, Jan, Hrdá, Štěpánka, Klimeš, Vladimír, Burger, Gertraud, Inagaki, Yuji, Keeling, Patrick J., Hampl, Vladimír, Flegontov, Pavel, Yurchenko, Vyacheslav, Eliáš, Marek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869587/
https://www.ncbi.nlm.nih.gov/pubmed/29588502
http://dx.doi.org/10.1038/s41598-018-23575-0
_version_ 1783309311003328512
author Záhonová, Kristína
Petrželková, Romana
Valach, Matus
Yazaki, Euki
Tikhonenkov, Denis V.
Butenko, Anzhelika
Janouškovec, Jan
Hrdá, Štěpánka
Klimeš, Vladimír
Burger, Gertraud
Inagaki, Yuji
Keeling, Patrick J.
Hampl, Vladimír
Flegontov, Pavel
Yurchenko, Vyacheslav
Eliáš, Marek
author_facet Záhonová, Kristína
Petrželková, Romana
Valach, Matus
Yazaki, Euki
Tikhonenkov, Denis V.
Butenko, Anzhelika
Janouškovec, Jan
Hrdá, Štěpánka
Klimeš, Vladimír
Burger, Gertraud
Inagaki, Yuji
Keeling, Patrick J.
Hampl, Vladimír
Flegontov, Pavel
Yurchenko, Vyacheslav
Eliáš, Marek
author_sort Záhonová, Kristína
collection PubMed
description Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.
format Online
Article
Text
id pubmed-5869587
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58695872018-04-02 Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase Záhonová, Kristína Petrželková, Romana Valach, Matus Yazaki, Euki Tikhonenkov, Denis V. Butenko, Anzhelika Janouškovec, Jan Hrdá, Štěpánka Klimeš, Vladimír Burger, Gertraud Inagaki, Yuji Keeling, Patrick J. Hampl, Vladimír Flegontov, Pavel Yurchenko, Vyacheslav Eliáš, Marek Sci Rep Article Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering. Nature Publishing Group UK 2018-03-27 /pmc/articles/PMC5869587/ /pubmed/29588502 http://dx.doi.org/10.1038/s41598-018-23575-0 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Záhonová, Kristína
Petrželková, Romana
Valach, Matus
Yazaki, Euki
Tikhonenkov, Denis V.
Butenko, Anzhelika
Janouškovec, Jan
Hrdá, Štěpánka
Klimeš, Vladimír
Burger, Gertraud
Inagaki, Yuji
Keeling, Patrick J.
Hampl, Vladimír
Flegontov, Pavel
Yurchenko, Vyacheslav
Eliáš, Marek
Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title_full Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title_fullStr Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title_full_unstemmed Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title_short Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
title_sort extensive molecular tinkering in the evolution of the membrane attachment mode of the rheb gtpase
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869587/
https://www.ncbi.nlm.nih.gov/pubmed/29588502
http://dx.doi.org/10.1038/s41598-018-23575-0
work_keys_str_mv AT zahonovakristina extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT petrzelkovaromana extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT valachmatus extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT yazakieuki extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT tikhonenkovdenisv extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT butenkoanzhelika extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT janouskovecjan extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT hrdastepanka extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT klimesvladimir extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT burgergertraud extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT inagakiyuji extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT keelingpatrickj extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT hamplvladimir extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT flegontovpavel extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT yurchenkovyacheslav extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase
AT eliasmarek extensivemoleculartinkeringintheevolutionofthemembraneattachmentmodeoftherhebgtpase