Cargando…

A hidden Markov tree model for testing multiple hypotheses corresponding to Gene Ontology gene sets

BACKGROUND: Testing predefined gene categories has become a common practice for scientists analyzing high throughput transcriptome data. A systematic way of testing gene categories leads to testing hundreds of null hypotheses that correspond to nodes in a directed acyclic graph. The relationships am...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Kun, Du, Chuanlong, You, Hankun, Nettleton, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869792/
https://www.ncbi.nlm.nih.gov/pubmed/29587646
http://dx.doi.org/10.1186/s12859-018-2106-5
Descripción
Sumario:BACKGROUND: Testing predefined gene categories has become a common practice for scientists analyzing high throughput transcriptome data. A systematic way of testing gene categories leads to testing hundreds of null hypotheses that correspond to nodes in a directed acyclic graph. The relationships among gene categories induce logical restrictions among the corresponding null hypotheses. An existing fully Bayesian method is powerful but computationally demanding. RESULTS: We develop a computationally efficient method based on a hidden Markov tree model (HMTM). Our method is several orders of magnitude faster than the existing fully Bayesian method. Through simulation and an expression quantitative trait loci study, we show that the HMTM method provides more powerful results than other existing methods that honor the logical restrictions. CONCLUSIONS: The HMTM method provides an individual estimate of posterior probability of being differentially expressed for each gene set, which can be useful for result interpretation. The R package can be found on https://github.com/k22liang/HMTGO. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2106-5) contains supplementary material, which is available to authorized users.