Cargando…

ER homeostasis and autophagy

The endoplasmic reticulum (ER) is a key site for lipid biosynthesis and folding of nascent transmembrane and secretory proteins. These processes are maintained by careful homeostatic control of the environment within the ER lumen. Signalling sensors within the ER detect perturbations within the lume...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Matthew, Wilkinson, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869861/
https://www.ncbi.nlm.nih.gov/pubmed/29233873
http://dx.doi.org/10.1042/EBC20170092
Descripción
Sumario:The endoplasmic reticulum (ER) is a key site for lipid biosynthesis and folding of nascent transmembrane and secretory proteins. These processes are maintained by careful homeostatic control of the environment within the ER lumen. Signalling sensors within the ER detect perturbations within the lumen (ER stress) and employ downstream signalling cascades that engage effector mechanisms to restore homeostasis. The most studied signalling mechanism that the ER employs is the unfolded protein response (UPR), which is known to increase a number of effector mechanisms, including autophagy. In this chapter, we will discuss the emerging role of autophagy as a UPR effector pathway. We will focus on the recently discovered selective autophagy pathway for ER, ER-phagy, with particular emphasis on the structure and function of known mammalian ER-phagy receptors, namely FAM134B, SEC62, RTN3 and CCPG1. Finally, we conclude with our view of where the future of this field can lead our understanding of the involvement of ER-phagy in ER homeostasis.