Cargando…
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels
BACKGROUND: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 gr...
Autores principales: | Sornapudi, Sudhir, Stanley, Ronald Joe, Stoecker, William V., Almubarak, Haidar, Long, Rodney, Antani, Sameer, Thoma, George, Zuna, Rosemary, Frazier, Shelliane R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869967/ https://www.ncbi.nlm.nih.gov/pubmed/29619277 http://dx.doi.org/10.4103/jpi.jpi_74_17 |
Ejemplares similares
-
Enhancements in localized classification for uterine cervical cancer digital histology image assessment
por: Guo, Peng, et al.
Publicado: (2016) -
Automated Cervical Digitized Histology Whole-Slide Image Analysis Toolbox
por: Sornapudi, Sudhir, et al.
Publicado: (2021) -
EpithNet: Deep Regression for Epithelium Segmentation in Cervical Histology Images
por: Sornapudi, Sudhir, et al.
Publicado: (2020) -
DeepCIN: Attention-Based Cervical histology Image Classification with Sequential Feature Modeling for Pathologist-Level Accuracy
por: Sornapudi, Sudhir, et al.
Publicado: (2020) -
Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020)