Cargando…

Cerebrospinal Fluid Biomarkers for Early and Differential Alzheimer’s Disease Diagnosis

An accurate and early diagnosis of Alzheimer’s disease (AD) is important to select optimal patient care and is critical in current clinical trials targeting core AD neuropathological features. The past decades, much progress has been made in the development and validation of cerebrospinal fluid (CSF...

Descripción completa

Detalles Bibliográficos
Autores principales: Bjerke, Maria, Engelborghs, Sebastiaan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870045/
https://www.ncbi.nlm.nih.gov/pubmed/29562530
http://dx.doi.org/10.3233/JAD-170680
Descripción
Sumario:An accurate and early diagnosis of Alzheimer’s disease (AD) is important to select optimal patient care and is critical in current clinical trials targeting core AD neuropathological features. The past decades, much progress has been made in the development and validation of cerebrospinal fluid (CSF) biomarkers for the biochemical diagnosis of AD, including standardization and harmonization of (pre-) analytical procedures. This has resulted in three core CSF biomarkers for AD diagnostics, namely the 42 amino acid long amyloid-beta peptide (Aβ(1-42)), total tau protein (T-tau), and tau phosphorylated at threonine 181 (P-tau(181)). These biomarkers have been incorporated into research diagnostic criteria for AD and have an added value in the (differential) diagnosis of AD and related disorders, including mixed pathologies, atypical presentations, and in case of ambiguous clinical dementia diagnoses. The implementation of the CSF Aβ(1-42)/Aβ(1-40) ratio in the core biomarker panel will improve the biomarker analytical variability, and will also improve early and differential AD diagnosis through a more accurate reflection of pathology. Numerous biomarkers are being investigated for their added value to the core AD biomarkers, aiming at the AD core pathological features like the amyloid mismetabolism, tau pathology, or synaptic or neuronal degeneration. Others aim at non-AD neurodegenerative, vascular or inflammatory hallmarks. Biomarkers are essential for an accurate identification of preclinical AD in the context of clinical trials with potentially disease-modifying drugs. Therefore, a biomarker-based early diagnosis of AD offers great opportunities for preventive treatment development in the near future.