Cargando…
Hybridization capture reveals microbial diversity missed using current profiling methods
BACKGROUND: Microorganisms comprise the majority of living organisms on our planet. For many years, exploration of the composition of microbial communities has been performed through the PCR-based study of the small subunit rRNA gene due to its high conservation across the domains of life. The appli...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870382/ https://www.ncbi.nlm.nih.gov/pubmed/29587880 http://dx.doi.org/10.1186/s40168-018-0442-3 |
Sumario: | BACKGROUND: Microorganisms comprise the majority of living organisms on our planet. For many years, exploration of the composition of microbial communities has been performed through the PCR-based study of the small subunit rRNA gene due to its high conservation across the domains of life. The application of this method has resulted in the discovery of many unexpected evolutionary lineages. However, amplicon sequencing is subject to numerous biases, with some taxa being missed, and is limited by the read length of second-generation sequencing platforms, which drastically reduces the phylogenetic resolution. RESULTS: Here, we describe a hybridization capture strategy that allows the enrichment of 16S rRNA genes from metagenomic samples and enables an exhaustive identification and a complete reconstruction of the biomarker. Applying this approach to a microbial mock community and a soil sample, we demonstrated that hybridization capture is able to reveal greater microbial diversity than 16S rDNA amplicon sequencing and shotgun sequencing. The reconstruction of full-length 16S rRNA genes facilitated the improvement of phylogenetic resolution and the discovery of novel prokaryotic taxa. CONCLUSIONS: Our results demonstrate that hybridization capture can lead to major breakthroughs in our understanding of microbial diversity, overcoming the limitations of conventional 16S rRNA gene studies. If applied to a broad range of environmental samples, this innovative approach could reveal the undescribed diversity of the still underexplored microbial communities and could provide a better understanding of ecosystem function. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0442-3) contains supplementary material, which is available to authorized users. |
---|