Cargando…
Obtaining insights from high-dimensional data: sparse principal covariates regression
BACKGROUND: Data analysis methods are usually subdivided in two distinct classes: There are methods for prediction and there are methods for exploration. In practice, however, there often is a need to learn from the data in both ways. For example, when predicting the antibody titers a few weeks afte...
Autores principales: | Van Deun, Katrijn, Crompvoets, Elise A. V., Ceulemans, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870402/ https://www.ncbi.nlm.nih.gov/pubmed/29587627 http://dx.doi.org/10.1186/s12859-018-2114-5 |
Ejemplares similares
-
Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
por: Binder, Harald, et al.
Publicado: (2008) -
A flexible framework for sparse simultaneous component based data integration
por: Van Deun, Katrijn, et al.
Publicado: (2011) -
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
por: Gentry, Amanda Elswick, et al.
Publicado: (2015) -
Bias and Precision of Continuous Norms Obtained Using Quantile Regression
por: Crompvoets, Elise A. V., et al.
Publicado: (2020) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017)