Cargando…
Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression
MOTIVATION: A prime challenge in precision cancer medicine is to identify genomic and molecular features that are predictive of drug treatment responses in cancer cells. Although there are several computational models for accurate drug response prediction, these often lack the ability to infer which...
Autores principales: | Ammad-ud-din, Muhammad, Khan, Suleiman A, Wennerberg, Krister, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870540/ https://www.ncbi.nlm.nih.gov/pubmed/28881998 http://dx.doi.org/10.1093/bioinformatics/btx266 |
Ejemplares similares
-
Predicting multicellular function through multi-layer tissue networks
por: Zitnik, Marinka, et al.
Publicado: (2017) -
When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants
por: Pagel, Kymberleigh A, et al.
Publicado: (2017) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017) -
Direct AUC optimization of regulatory motifs
por: Zhu, Lin, et al.
Publicado: (2017) -
CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions
por: Hallen, Mark A, et al.
Publicado: (2017)