Cargando…
Image-based spatiotemporal causality inference for protein signaling networks
MOTIVATION: Efforts to model how signaling and regulatory networks work in cells have largely either not considered spatial organization or have used compartmental models with minimal spatial resolution. Fluorescence microscopy provides the ability to monitor the spatiotemporal distribution of many...
Autores principales: | Ruan, Xiongtao, Wülfing, Christoph, Murphy, Robert F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870542/ https://www.ncbi.nlm.nih.gov/pubmed/28881992 http://dx.doi.org/10.1093/bioinformatics/btx258 |
Ejemplares similares
-
When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants
por: Pagel, Kymberleigh A, et al.
Publicado: (2017) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017) -
Direct AUC optimization of regulatory motifs
por: Zhu, Lin, et al.
Publicado: (2017) -
CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions
por: Hallen, Mark A, et al.
Publicado: (2017) -
Modelling haplotypes with respect to reference cohort variation graphs
por: Rosen, Yohei, et al.
Publicado: (2017)