Cargando…
Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding
MOTIVATION: Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handc...
Autores principales: | Min, Xu, Zeng, Wanwen, Chen, Ning, Chen, Ting, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870572/ https://www.ncbi.nlm.nih.gov/pubmed/28881969 http://dx.doi.org/10.1093/bioinformatics/btx234 |
Ejemplares similares
-
Denoising genome-wide histone ChIP-seq with convolutional neural networks
por: Koh, Pang Wei, et al.
Publicado: (2017) -
DeepBound: accurate identification of transcript boundaries via deep convolutional neural fields
por: Shao, Mingfu, et al.
Publicado: (2017) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants
por: Pagel, Kymberleigh A, et al.
Publicado: (2017) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017)