Cargando…
Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression
MOTIVATION: The discovery of relationships between gene expression measurements and phenotypic responses is hampered by both computational and statistical impediments. Conventional statistical methods are less than ideal because they either fail to select relevant genes, predict poorly, ignore the u...
Autores principales: | Ding, Lei, McDonald, Daniel J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870707/ https://www.ncbi.nlm.nih.gov/pubmed/28881997 http://dx.doi.org/10.1093/bioinformatics/btx265 |
Ejemplares similares
-
When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants
por: Pagel, Kymberleigh A, et al.
Publicado: (2017) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017) -
Direct AUC optimization of regulatory motifs
por: Zhu, Lin, et al.
Publicado: (2017) -
CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions
por: Hallen, Mark A, et al.
Publicado: (2017) -
Modelling haplotypes with respect to reference cohort variation graphs
por: Rosen, Yohei, et al.
Publicado: (2017)