Cargando…
RTK: efficient rarefaction analysis of large datasets
MOTIVATION: The rapidly expanding microbiomics field is generating increasingly larger datasets, characterizing the microbiota in diverse environments. Although classical numerical ecology methods provide a robust statistical framework for their analysis, software currently available is inadequate f...
Autores principales: | Saary, Paul, Forslund, Kristoffer, Bork, Peer, Hildebrand, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870771/ https://www.ncbi.nlm.nih.gov/pubmed/28398468 http://dx.doi.org/10.1093/bioinformatics/btx206 |
Ejemplares similares
-
MOCAT2: a metagenomic assembly, annotation and profiling framework
por: Kultima, Jens Roat, et al.
Publicado: (2016) -
HiCBricks: building blocks for efficient handling of large Hi-C datasets
por: Pal, Koustav, et al.
Publicado: (2020) -
MEME-ChIP: motif analysis of large DNA datasets
por: Machanick, Philip, et al.
Publicado: (2011) -
SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets
por: Mao, Hongliang, et al.
Publicado: (2017) -
WiggleTools: parallel processing of large collections of genome-wide datasets for visualization and statistical analysis
por: Zerbino, Daniel R., et al.
Publicado: (2014)